Molecular Design Strategy for High‐Redox‐Potential and Poorly Soluble n‐Type Phenazine Derivatives as Cathode Materials for Lithium Batteries

锂(药物) 氧化还原 溶解度 阴极 锂原子 化学 溶解 电池(电) 组合化学 分子 电化学 无机化学 电极 有机化学 物理化学 离子 物理 内分泌学 医学 功率(物理) 量子力学 电离
作者
Licheng Miao,Luojia Liu,Kai Zhang,Jun Chen
出处
期刊:Chemsuschem [Wiley]
卷期号:13 (9): 2337-2344 被引量:41
标识
DOI:10.1002/cssc.202000004
摘要

Abstract The n‐type phenazine (PZ) derivatives represent an emerging class of cathode materials in lithium batteries for low‐cost and sustainable energy storage. However, their low redox potential (<2 V) and high solubility hinder their application to battery systems. To explore and solve such problems in lithium batteries, we investigate the redox characteristics of 13 n‐type PZ derivatives and their dissolution behavior in seven organic electrolytes systematically by using DFT calculations. Two decisive factors are observed to tune the redox potentials for these molecules: the first is the electron density around the N active sites and the second is the chelation on lithium by both the active N and the substituent group. Specific approaches that include the reduction of aromatic rings and the introduction of functional groups at β sites in n‐type PZ derivatives can improve the redox potential to approximately 3 V. In addition, we develop a new index denoted as E diff to investigate the solubility of n‐type PZ derivatives. The most effective way to reduce the dissolution of electrodes in solvents is to improve intermolecular attraction between the electrode molecules by introducing π–π stacking and hydrogen bonds. Such all‐around guidelines should promote the application of n‐type PZ‐based organic cathodes with a high redox potential and low electrode solubility for lithium batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AnitaAdal应助零容忍采纳,获得10
2秒前
tomf完成签到,获得积分10
3秒前
wanci应助谨慎乞采纳,获得10
3秒前
传奇3应助五更夜采纳,获得10
6秒前
秀丽的访曼完成签到,获得积分10
7秒前
科研通AI5应助huyz采纳,获得10
7秒前
共享精神应助科研小白采纳,获得10
8秒前
hinelson完成签到 ,获得积分10
8秒前
9秒前
10秒前
11秒前
传奇3应助立军采纳,获得10
13秒前
STAR完成签到 ,获得积分10
13秒前
kkgaojing发布了新的文献求助20
14秒前
小木得霖发布了新的文献求助10
15秒前
谨慎乞发布了新的文献求助10
15秒前
17秒前
17秒前
18秒前
19秒前
平常的毛豆应助KAJIKU采纳,获得10
19秒前
moran关注了科研通微信公众号
19秒前
小木得霖完成签到,获得积分10
21秒前
23秒前
三点一共发布了新的文献求助10
23秒前
科研小白发布了新的文献求助10
23秒前
都是发布了新的文献求助30
23秒前
搜集达人应助MoonMonth采纳,获得10
25秒前
orixero应助秀丽的访曼采纳,获得10
26秒前
girl发布了新的文献求助10
27秒前
谨慎乞完成签到,获得积分10
27秒前
追梦远行人完成签到 ,获得积分10
29秒前
午后狂睡完成签到 ,获得积分10
30秒前
31秒前
勤劳天问发布了新的文献求助10
31秒前
32秒前
32秒前
Rhan完成签到,获得积分10
33秒前
悠悠完成签到,获得积分10
33秒前
34秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816942
求助须知:如何正确求助?哪些是违规求助? 3360342
关于积分的说明 10407653
捐赠科研通 3078322
什么是DOI,文献DOI怎么找? 1690694
邀请新用户注册赠送积分活动 814001
科研通“疑难数据库(出版商)”最低求助积分说明 767958