Deep Learning Method for Grasping Novel Objects Using Dexterous Hands

抓住 人工智能 计算机视觉 计算机科学 构造(python库) 卷积神经网络 对象(语法) 机器人学 矩形 人工神经网络 机器人 模式识别(心理学) 数学 几何学 程序设计语言
作者
Weiwei Shang,Fangjing Song,Zengzhi Zhao,Hongbo Gao,Shuang Cong,Zhijun Li
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:52 (5): 2750-2762 被引量:22
标识
DOI:10.1109/tcyb.2020.3022175
摘要

Robotic grasping ability lags far behind human skills and poses a significant challenge in the robotics research area. According to the grasping part of an object, humans can select the appropriate grasping postures of their fingers. When humans grasp the same part of an object, different poses of the palm will cause them to select different grasping postures. Inspired by these human skills, in this article, we propose new grasping posture prediction networks (GPPNs) with multiple inputs, which acquire information from the object image and the palm pose of the dexterous hand to predict appropriate grasping postures. The GPPNs are further combined with grasping rectangle detection networks (GRDNs) to construct multilevel convolutional neural networks (ML-CNNs). In this study, a force-closure index was designed to analyze the grasping quality, and force-closure grasping postures were generated in the GraspIt! environment. Depth images of objects were captured in the Gazebo environment to construct the dataset for the GPPNs. Herein, we describe simulation experiments conducted in the GraspIt! environment, and present our study of the influences of the image input and the palm pose input on the GPPNs using a variable-controlling approach. In addition, the ML-CNNs were compared with the existing grasp detection methods. The simulation results verify that the ML-CNNs have a high grasping quality. The grasping experiments were implemented on the Shadow hand platform, and the results show that the ML-CNNs can accurately complete grasping of novel objects with good performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZZZ完成签到 ,获得积分20
1秒前
脑洞疼应助小小采纳,获得10
1秒前
Zilong864完成签到,获得积分10
1秒前
123完成签到,获得积分10
2秒前
田様应助鲨鱼游泳教练采纳,获得10
2秒前
慕青应助鲨鱼游泳教练采纳,获得10
2秒前
Orange应助鲨鱼游泳教练采纳,获得10
2秒前
852应助鲨鱼游泳教练采纳,获得10
2秒前
彭于晏应助鲨鱼游泳教练采纳,获得10
2秒前
小二郎应助鲨鱼游泳教练采纳,获得10
2秒前
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
所所应助科研通管家采纳,获得10
2秒前
思源应助科研通管家采纳,获得10
3秒前
Akim应助科研通管家采纳,获得20
3秒前
3秒前
不回首完成签到 ,获得积分10
3秒前
Hello应助科研通管家采纳,获得10
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
情怀应助科研通管家采纳,获得10
3秒前
打打应助科研通管家采纳,获得10
3秒前
施青文完成签到,获得积分10
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
3秒前
Orange应助科研通管家采纳,获得10
3秒前
Akim应助科研通管家采纳,获得30
3秒前
董y应助科研通管家采纳,获得10
3秒前
3秒前
中岛悠斗完成签到,获得积分10
3秒前
3秒前
SL发布了新的文献求助10
3秒前
海王星完成签到,获得积分10
4秒前
牛牛牛完成签到,获得积分10
4秒前
lemon完成签到,获得积分10
4秒前
4秒前
RichieXU完成签到,获得积分10
5秒前
濠哥妈咪发布了新的文献求助10
5秒前
魔道祖师发布了新的文献求助10
6秒前
斯文白白发布了新的文献求助10
6秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4486814
求助须知:如何正确求助?哪些是违规求助? 3941767
关于积分的说明 12223608
捐赠科研通 3598273
什么是DOI,文献DOI怎么找? 1978953
邀请新用户注册赠送积分活动 1015806
科研通“疑难数据库(出版商)”最低求助积分说明 909061