亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Development of a Complication- and Treatment-Aware Prediction Model for Favorable Functional Outcome in Aneurysmal Subarachnoid Hemorrhage Based on Machine Learning

医学 改良兰金量表 蛛网膜下腔出血 接收机工作特性 队列 结果(博弈论) 前瞻性队列研究 并发症 临床试验 机器学习 人工智能 内科学 数理经济学 缺血性中风 缺血 数学 计算机科学
作者
Nicolai Maldaner,Anna Maria Zeitlberger,Marketa Sosnova,Johannes Goldberg,Christian Fung,David Bervini,Adrien May,Philippe Bijlenga,Karl Schaller,Michel Roethlisberger,Jonathan Rychen,D. Zumofen,Donato D’Alonzo,Serge Marbacher,Javier Fandino,Roy Thomas Daniel,Jan‐Karl Burkhardt,Alessio Chiappini,Thomas Robert,Bawarjan Schatlo
出处
期刊:Neurosurgery [Lippincott Williams & Wilkins]
卷期号:88 (2): E150-E157 被引量:25
标识
DOI:10.1093/neuros/nyaa401
摘要

Current prognostic tools in aneurysmal subarachnoid hemorrhage (aSAH) are constrained by being primarily based on patient and disease characteristics on admission.To develop and validate a complication- and treatment-aware outcome prediction tool in aSAH.This cohort study included data from an ongoing prospective nationwide multicenter registry on all aSAH patients in Switzerland (Swiss SOS [Swiss Study on aSAH]; 2009-2015). We trained supervised machine learning algorithms to predict a binary outcome at discharge (modified Rankin scale [mRS] ≤ 3: favorable; mRS 4-6: unfavorable). Clinical and radiological variables on admission ("Early" Model) as well as additional variables regarding secondary complications and disease management ("Late" Model) were used. Performance of both models was assessed by classification performance metrics on an out-of-sample test dataset.Favorable functional outcome at discharge was observed in 1156 (62.0%) of 1866 patients. Both models scored a high accuracy of 75% to 76% on the test set. The "Late" outcome model outperformed the "Early" model with an area under the receiver operator characteristics curve (AUC) of 0.85 vs 0.79, corresponding to a specificity of 0.81 vs 0.70 and a sensitivity of 0.71 vs 0.79, respectively.Both machine learning models show good discrimination and calibration confirmed on application to an internal test dataset of patients with a wide range of disease severity treated in different institutions within a nationwide registry. Our study indicates that the inclusion of variables reflecting the clinical course of the patient may lead to outcome predictions with superior predictive power compared to a model based on admission data only.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苦瓜大王完成签到 ,获得积分10
刚刚
ruikuku发布了新的文献求助50
3秒前
西扬完成签到 ,获得积分10
6秒前
9秒前
10秒前
12秒前
15秒前
卓头OvQ发布了新的文献求助10
17秒前
19秒前
顾矜应助jclin采纳,获得10
22秒前
24秒前
26秒前
28秒前
上官若男应助卓头OvQ采纳,获得10
29秒前
慈祥的雅寒完成签到,获得积分10
30秒前
Once发布了新的文献求助10
31秒前
清心路人应助zztOvO采纳,获得10
32秒前
动听的涵山完成签到,获得积分10
33秒前
37秒前
碳水化合物完成签到,获得积分10
40秒前
乐观生活发布了新的文献求助10
41秒前
Once完成签到,获得积分10
42秒前
充电宝应助张三采纳,获得20
49秒前
王木木完成签到 ,获得积分10
49秒前
jclin完成签到,获得积分10
52秒前
完美世界应助乐观生活采纳,获得10
53秒前
Simpson完成签到 ,获得积分0
54秒前
科研通AI6应助jclin采纳,获得10
55秒前
yann应助幸福元灵采纳,获得10
56秒前
慕青应助水蜜桃一大钵采纳,获得10
1分钟前
ceeray23发布了新的文献求助20
1分钟前
1分钟前
莫名是个小疯子应助LSY采纳,获得10
1分钟前
carbonado发布了新的文献求助30
1分钟前
传奇3应助hrpppp采纳,获得10
1分钟前
jclin发布了新的文献求助10
1分钟前
1分钟前
嘉欣完成签到 ,获得积分10
1分钟前
11122完成签到,获得积分10
1分钟前
Owen应助MinQi采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5077035
求助须知:如何正确求助?哪些是违规求助? 4296314
关于积分的说明 13386817
捐赠科研通 4118612
什么是DOI,文献DOI怎么找? 2255417
邀请新用户注册赠送积分活动 1259879
关于科研通互助平台的介绍 1192954