Development of a Complication- and Treatment-Aware Prediction Model for Favorable Functional Outcome in Aneurysmal Subarachnoid Hemorrhage Based on Machine Learning

医学 改良兰金量表 蛛网膜下腔出血 接收机工作特性 队列 结果(博弈论) 前瞻性队列研究 并发症 临床试验 机器学习 人工智能 内科学 数理经济学 缺血性中风 缺血 数学 计算机科学
作者
Nicolai Maldaner,Anna Maria Zeitlberger,Marketa Sosnova,Johannes Goldberg,Christian Fung,David Bervini,Adrien May,Philippe Bijlenga,Karl Schaller,Michel Roethlisberger,Jonathan Rychen,Daniel Zumofen,Donato D’Alonzo,Serge Marbacher,Javier Fandino,Roy Thomas Daniel,Jan‐Karl Burkhardt,Alessio Chiappini,Thomas Robert,Bawarjan Schatlo
出处
期刊:Neurosurgery [Oxford University Press]
卷期号:88 (2): E150-E157 被引量:27
标识
DOI:10.1093/neuros/nyaa401
摘要

Abstract BACKGROUND Current prognostic tools in aneurysmal subarachnoid hemorrhage (aSAH) are constrained by being primarily based on patient and disease characteristics on admission. OBJECTIVE To develop and validate a complication- and treatment-aware outcome prediction tool in aSAH. METHODS This cohort study included data from an ongoing prospective nationwide multicenter registry on all aSAH patients in Switzerland (Swiss SOS [Swiss Study on aSAH]; 2009-2015). We trained supervised machine learning algorithms to predict a binary outcome at discharge (modified Rankin scale [mRS] ≤ 3: favorable; mRS 4-6: unfavorable). Clinical and radiological variables on admission (“Early” Model) as well as additional variables regarding secondary complications and disease management (“Late” Model) were used. Performance of both models was assessed by classification performance metrics on an out-of-sample test dataset. RESULTS Favorable functional outcome at discharge was observed in 1156 (62.0%) of 1866 patients. Both models scored a high accuracy of 75% to 76% on the test set. The “Late” outcome model outperformed the “Early” model with an area under the receiver operator characteristics curve (AUC) of 0.85 vs 0.79, corresponding to a specificity of 0.81 vs 0.70 and a sensitivity of 0.71 vs 0.79, respectively. CONCLUSION Both machine learning models show good discrimination and calibration confirmed on application to an internal test dataset of patients with a wide range of disease severity treated in different institutions within a nationwide registry. Our study indicates that the inclusion of variables reflecting the clinical course of the patient may lead to outcome predictions with superior predictive power compared to a model based on admission data only.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Frank应助萨尔莫斯采纳,获得10
刚刚
深情安青应助nenoaowu采纳,获得10
刚刚
ohh完成签到,获得积分10
1秒前
2秒前
森屿发布了新的文献求助10
2秒前
cc发布了新的文献求助10
2秒前
CipherSage应助FireflyCW采纳,获得10
2秒前
2秒前
Zhongdada发布了新的文献求助10
3秒前
4秒前
领导范儿应助schnappi采纳,获得10
5秒前
pengjunjiang完成签到,获得积分10
5秒前
上山打老虎完成签到 ,获得积分10
5秒前
5秒前
null给null的求助进行了留言
6秒前
7秒前
桐桐应助cc采纳,获得10
7秒前
科研通AI6应助咸蛋超人采纳,获得10
7秒前
123发布了新的文献求助10
8秒前
等待若魔发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
微醺潮汐发布了新的文献求助10
10秒前
面包树完成签到,获得积分10
10秒前
淡定绮波应助淡定从凝采纳,获得10
10秒前
小蘑菇应助会飞的猪qq采纳,获得10
11秒前
优美水彤完成签到,获得积分10
11秒前
安装地方完成签到,获得积分10
13秒前
14秒前
15秒前
嘉荣发布了新的文献求助10
15秒前
15秒前
英姑应助超威蓝猫采纳,获得10
16秒前
17秒前
18秒前
小马甲应助123采纳,获得10
18秒前
18秒前
18秒前
vivi发布了新的文献求助100
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5521585
求助须知:如何正确求助?哪些是违规求助? 4612927
关于积分的说明 14536362
捐赠科研通 4550430
什么是DOI,文献DOI怎么找? 2493661
邀请新用户注册赠送积分活动 1474837
关于科研通互助平台的介绍 1446233