Flow Pattern Transition in Pipes Using Data-Driven and Physics-Informed Machine Learning

压力降 机器学习 人工智能 计算机科学 人工神经网络 启发式 流量(数学) 公制(单位) 机械 工程类 物理 运营管理
作者
André Mendes Quintino,Davi Lotfi Lavor Navarro da Rocha,Roberto da Fonseca,Oscar Maurício Hernandez Rodriguez
出处
期刊:Journal of Fluids Engineering-transactions of The Asme [ASM International]
被引量:28
标识
DOI:10.1115/1.4048876
摘要

Abstract Flow pattern is an important engineering design factor in two-phase flow in the chemical, nuclear and energy industries, given its effects on pressure drop, holdup, and heat and mass transfer. The prediction of two-phase flow patterns through phenomenological models is widely used in both industry and academy. In contrast, as more experimental data become available for gas-liquid flow in pipes, the use of data-driven models to predict flow-pattern transition, such as machine learning, has become more reliable. This type of heuristic modeling has a high demand for experimental data, which may not be available in some industrial applications. As a consequence, it may fail to deliver a sufficiently generalized transition prediction. Incorporation of physics in machine learning is being proposed as an alternative to improve prediction and also to reduce the demand for experimental data. This paper evaluates the use of hybrid-physics-data machine learning to predict gas-liquid flow-pattern transition in pipes. Random forest and artificial neural network are the chosen tools. A database of experiments available in the open literature was collected and is shared in this work. The performance of the proposed hybrid model is compared with phenomenological and data-driven machine learning models through confusion matrices and graphics. The results show improvement in prediction performance even with a low amount of data for training. The study also suggests that graphical comparison of flow-pttern transition boundaries provides better understanding of the performance of the models than the traditional metric
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
银河打工人应助asdfqwer采纳,获得10
3秒前
4秒前
5秒前
大模型应助嗯哼采纳,获得10
6秒前
9秒前
天真的青发布了新的文献求助10
11秒前
yujian发布了新的文献求助10
12秒前
乐乐应助大胆绮兰采纳,获得10
15秒前
Owen应助橙橙橙橙橙子采纳,获得10
17秒前
林夕完成签到,获得积分10
20秒前
23秒前
23秒前
24秒前
25秒前
25秒前
嗯哼发布了新的文献求助10
28秒前
29秒前
Quincy完成签到,获得积分10
29秒前
kk发布了新的文献求助20
29秒前
30秒前
袁融发布了新的文献求助10
30秒前
31秒前
Zack发布了新的文献求助10
31秒前
34秒前
阔达碧空发布了新的文献求助10
35秒前
36秒前
kk完成签到,获得积分20
38秒前
caicainuegou发布了新的文献求助10
39秒前
Ava应助阔达碧空采纳,获得10
41秒前
科研小农民应助虞无声采纳,获得50
42秒前
莫名乐乐完成签到,获得积分10
44秒前
48秒前
51秒前
53秒前
阿南发布了新的文献求助10
54秒前
54秒前
57秒前
ww发布了新的文献求助30
57秒前
我服有点黑完成签到,获得积分10
1分钟前
彭于晏应助茉莉青提采纳,获得10
1分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784026
求助须知:如何正确求助?哪些是违规求助? 3329139
关于积分的说明 10240207
捐赠科研通 3044616
什么是DOI,文献DOI怎么找? 1671150
邀请新用户注册赠送积分活动 800161
科研通“疑难数据库(出版商)”最低求助积分说明 759193