神经红蛋白
氧化应激
细胞生物学
活性氧
转录因子
癌细胞
生物
细胞内
调解人
化学
生物化学
癌症
珠蛋白
基因
遗传学
作者
Virginia Solar Fernandez,Manuela Cipolletti,Paolo Ascenzi,Maria Marino,Marco Fiocchetti
标识
DOI:10.1089/ars.2019.7870
摘要
Aims: Nuclear factor (erythroid-derived 2)-like-2 factor (NRF-2) is a transcription factor well known to provide an advantage for cancer growth and survival regulating the cellular redox pathway. In breast cancer cells, we recently identified the monomeric heme-globin neuroglobin (NGB) as part of a new mechanism induced by the steroid hormone 17β-estradiol (E2) against oxidative stress. While there is mounting evidence suggesting a critical role of NGB as a sensor of oxidative stress, scarce information is available about its involvement in NRF-2 pathway activation in breast cancer cells. Results: Although NGB is not involved in the rapid E2-induced NRF-2 stability, E2 loses the capacity to regulate the expression of NRF-2-dependent genes in NGB-depleted MCF-7 cells. These data strongly sustain a role of NGB as a compensatory protein in the E2-activated intracellular pathway devoted to the increase of cancer cells tolerance to reactive oxygen species (ROS) generation in stressing conditions acting as key regulator of NRF-2 pathway activity in a time-dependent manner. Innovation: In this study, we identified a new role of NGB in the cell response to oxidative stress. Conclusion: Altogether, reported results open new insights on the NGB effect in regulating intracellular pathways related to cell adaptive response to stress and, as consequence, to cell survival, beyond its direct effect as ROS scavenger, opening new prospective in cancer therapeutic intervention.
科研通智能强力驱动
Strongly Powered by AbleSci AI