石墨烯
材料科学
锂(药物)
阴极
离子键合
电解质
化学工程
复合数
相(物质)
纳米颗粒
纳米复合材料
纳米技术
离子
复合材料
化学
物理化学
电极
有机化学
内分泌学
工程类
医学
作者
Hongli Wan,Liangting Cai,Fudong Han,Jean Pierre Mwizerwa,Chunsheng Wang,Xiayin Yao
出处
期刊:Small
[Wiley]
日期:2019-11-14
卷期号:15 (50)
被引量:78
标识
DOI:10.1002/smll.201905849
摘要
Abstract High and balanced electronic and ionic transportation networks with nanoscale distribution in solid‐state cathodes are crucial to realize high‐performance all‐solid‐state lithium batteries. Using Cu 2 SnS 3 as a model active material, such a kind of solid‐state Cu 2 SnS 3 @graphene‐Li 7 P 3 S 11 nanocomposite cathodes are synthesized, where 5–10 nm Cu 2 SnS 3 nanoparticles homogenously anchor on the graphene nanosheets, while the Li 7 P 3 S 11 electrolytes uniformly coat on the surface of Cu 2 SnS 3 @graphene composite forming nanoscaled electron/ion transportation networks. The large amount of nanoscaled triple‐phase boundary in cathode ensures high power density due to high ionic/electronic conductions and long cycle life due to uniform and reduced volume change of nano‐Cu 2 SnS 3. The Cu 2 SnS 3 @graphene‐Li 7 P 3 S 11 cathode layer with 2.0 mg cm −2 loading in all‐solid‐state lithium batteries demonstrates a high reversible discharge specific capacity of 813.2 mAh g −1 at 100 mA g −1 and retains 732.0 mAh g −1 after 60 cycles, corresponding to a high energy density of 410.4 Wh kg −1 based on the total mass of Cu 2 SnS 3 @graphene‐Li 7 P 3 S 11 composite based cathode. Moreover, it exhibits excellent rate capability and high‐rate cycling stability, showing reversible capacity of 363.5 mAh g −1 at 500 mA g −1 after 200 cycles. The study provides a new insight into constructing both electronic and ionic conduction networks for all‐solid‐state lithium batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI