已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Predicting disease-associated mutation of metal-binding sites in proteins using a deep learning approach

金属蛋白 突变 深度学习 卷积神经网络 结合位点 计算生物学 遗传学 计算机科学 化学 生物 人工智能 生物化学 基因
作者
Mohamad Koohi‐Moghadam,Haibo Wang,Yuchuan Wang,Xinming Yang,Hongyan Li,Junwen Wang,Hongzhe Sun
出处
期刊:Nature Machine Intelligence [Nature Portfolio]
卷期号:1 (12): 561-567 被引量:55
标识
DOI:10.1038/s42256-019-0119-z
摘要

Metalloproteins play important roles in many biological processes. Mutations at the metal-binding sites may functionally disrupt metalloproteins, initiating severe diseases; however, there seemed to be no effective approach to predict such mutations until now. Here we develop a deep learning approach to successfully predict disease-associated mutations that occur at the metal-binding sites of metalloproteins. We generate energy-based affinity grid maps and physiochemical features of the metal-binding pockets (obtained from different databases as spatial and sequential features) and subsequently implement these features into a multichannel convolutional neural network. After training the model, the multichannel convolutional neural network can successfully predict disease-associated mutations that occur at the first and second coordination spheres of zinc-binding sites with an area under the curve of 0.90 and an accuracy of 0.82. Our approach stands for the first deep learning approach for the prediction of disease-associated metal-relevant site mutations in metalloproteins, providing a new platform to tackle human diseases. Metals can bind to proteins to fulfil important biological functions. Predicting the features of mutated binding sites can thus help us understand the connection between specific mutations and their role in diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
健忘樱桃发布了新的文献求助10
2秒前
小鱼儿发布了新的文献求助10
2秒前
杨乃彬完成签到,获得积分10
2秒前
张军发布了新的文献求助10
3秒前
3秒前
赘婿应助自由焦虑采纳,获得30
3秒前
mufeixue发布了新的文献求助10
6秒前
小蘑菇应助加湿器采纳,获得10
8秒前
Cc完成签到 ,获得积分10
8秒前
9秒前
科研通AI5应助HonamC采纳,获得10
10秒前
酥瓜完成签到 ,获得积分10
12秒前
13秒前
13秒前
yanananan发布了新的文献求助10
13秒前
cdercder应助Gasol采纳,获得10
14秒前
14秒前
15秒前
苏苏苏发布了新的文献求助10
15秒前
17秒前
18秒前
20秒前
20秒前
21秒前
qq发布了新的文献求助10
22秒前
22秒前
丘比特应助zzz采纳,获得10
22秒前
Leon发布了新的文献求助10
22秒前
苏A尔发布了新的文献求助10
24秒前
ccx981166完成签到,获得积分10
25秒前
25秒前
HonamC发布了新的文献求助10
25秒前
华仔应助ifegiugfieugfig采纳,获得10
26秒前
XY发布了新的文献求助10
27秒前
zoe应助笑笑采纳,获得10
27秒前
机灵自行车完成签到,获得积分20
29秒前
慕青应助qq采纳,获得10
30秒前
32秒前
可乐可不乐完成签到,获得积分10
32秒前
32秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792341
求助须知:如何正确求助?哪些是违规求助? 3336534
关于积分的说明 10281314
捐赠科研通 3053247
什么是DOI,文献DOI怎么找? 1675545
邀请新用户注册赠送积分活动 803525
科研通“疑难数据库(出版商)”最低求助积分说明 761436