Two-stage single image reflection removal with reflection-aware guidance

计算机科学 反射(计算机编程) 传输(电信) 特征(语言学) 卷积(计算机科学) 编码(集合论) 人工智能 图像(数学) 编码器 计算机视觉 算法 人工神经网络 电信 操作系统 哲学 集合(抽象数据类型) 程序设计语言 语言学
作者
Yu Li,Ming Liu,Yaling Yi,Qince Li,Dongwei Ren,Wangmeng Zuo
出处
期刊:Applied Intelligence [Springer Science+Business Media]
卷期号:53 (16): 19433-19448 被引量:1
标识
DOI:10.1007/s10489-022-04391-6
摘要

Removing undesired reflection from an image captured through a glass surface is a very challenging problem with many practical applications. For improving reflection removal, cascaded deep models have been usually adopted to estimate the transmission in a progressive manner. However, most existing methods are still limited in exploiting the result in prior stage for guiding transmission estimation. In this paper, we present a novel two-stage network with reflection-aware guidance (RAGNet) for single image reflection removal (SIRR). To be specific, the reflection layer is firstly estimated due to that it generally is much simpler and is relatively easier to estimate. Reflection-aware guidance (RAG) module is then elaborated for better exploiting the estimated reflection in predicting transmission layer. By incorporating feature maps from the estimated reflection and observation, RAG can be used (i) to mitigate the effect of reflection from the observation, and (ii) to generate mask in soft partial convolution for mitigating the effect of deviating from linear combination hypothesis. A dedicated mask loss is further presented for reconciling the contributions of encoder and decoder features. Experiments on five commonly used datasets demonstrate the quantitative and qualitative superiority of our RAGNet in comparison to the state-of-the-art SIRR methods. The source code and pre-trained model are available at https://github.com/liyucs/RAGNet .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研究僧-卓发布了新的文献求助10
刚刚
lydy1993完成签到,获得积分10
刚刚
Hello应助抹一抹渣渣采纳,获得10
1秒前
1秒前
wang发布了新的文献求助10
1秒前
1秒前
hjyylab应助JJ采纳,获得10
2秒前
2秒前
3秒前
yhmi0809完成签到,获得积分10
3秒前
零容忍发布了新的文献求助200
4秒前
科研通AI5应助科研通管家采纳,获得30
4秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
爆米花应助科研通管家采纳,获得10
4秒前
烟花应助科研通管家采纳,获得10
4秒前
思源应助科研通管家采纳,获得10
4秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
139完成签到 ,获得积分0
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
orixero应助科研通管家采纳,获得10
5秒前
田様应助科研通管家采纳,获得10
5秒前
5秒前
Lucas应助科研通管家采纳,获得30
5秒前
5秒前
5秒前
9秒前
9秒前
10秒前
Ly啦啦啦发布了新的文献求助10
10秒前
小蘑菇应助努力努力采纳,获得10
11秒前
11秒前
研究僧-卓完成签到,获得积分20
13秒前
酷酷银耳汤完成签到,获得积分10
14秒前
忍冬发布了新的文献求助10
14秒前
haoqingyun发布了新的文献求助20
14秒前
菟小鹿发布了新的文献求助10
15秒前
15秒前
chongchong发布了新的文献求助10
16秒前
liuwei发布了新的文献求助10
20秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Stock price prediction in Chinese stock markets based on CNN-GRU-attention model 200
The phrasal lexicon 200
Solving Nonlinear Equations with Newton's Method 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3836238
求助须知:如何正确求助?哪些是违规求助? 3378602
关于积分的说明 10505076
捐赠科研通 3098233
什么是DOI,文献DOI怎么找? 1706347
邀请新用户注册赠送积分活动 820967
科研通“疑难数据库(出版商)”最低求助积分说明 772349