亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Capillary Pressure in Nanopores: Deviation from Young-Laplace Equation

毛细管作用 拉普拉斯压力 毛细管压力 表面张力 拉普拉斯方程 开尔文方程 机械 毛细管数 拉普拉斯变换 热力学 材料科学 化学 毛细管冷凝 毛细管长度 多孔介质 多孔性 吸附 物理 微分方程 复合材料 数学 数学分析 有机化学 量子力学
作者
Bo Li,Khoa Bui,I. Yücel Akkutlu
标识
DOI:10.2118/185801-ms
摘要

Abstract Recent studies on multi-phase fluids in nanoscale capillaries indicated that the capillary wall-fluid interactions could play a dominant role on the co-existence of the phases, which may change the fundamental properties of the fluids, such as density, viscosity, and interfacial tension. At the extreme of the confinement, these properties become vague. This raises a serious question on the validity of Young-Laplace equation to predict capillary pressure in small capillaries that the unconventional resources commonly exhibit. In this paper, using nonequilibrium molecular dynamics simulation of mercury injection into model nanocapillaries, the nature of multi-phase fluids is investigated in capillaries with sizes below 20nm, and the Young-Laplace equation is re-visited. Higher capillary pressure is predicted for the model nanocapillaries used in the simulations compared to that value obtained using the Young-Laplace equation, in particular, when the capillary diameter is less than 10nm. Good agreement found with the theory in larger size capillary. The capillary pressure increases as the capillary size is decreased and shows a power-law dependence onthe size of the capillary. This dependence yields up to 70% increase in the estimated capillary pressure value for the extreme case of 1nm capillary. Higher tangential local pressures at the nanocapillary entry resulted from the adsorption phase is the cause of the difference. Based on the observations, a modified Young-Laplace equation is proposed for mercury-airfilled pore systems which are commonly used in Mercury Injection Capillary Pressure (MICP) experiments for the pore volume and pore size distribution measurements. At the highest injection pressure of MICP, the minimum captured size is predicted 4.8nm instead of 3.6nm based on the Young-Laplace equation. The increase in the predicted capillary size leads to an increase in total pore volume of the sample. The error in volume is up to 20% for measurements with shale samples. The results are important for the characterization of resource shale formations because the nanopore volume correction influence the hydrocarbon in-place and reserve calculations. The work can be extended to other multi-phase systems, such as oil-water, and water-gas, grouping with other capillary wall material to study the behavior of multi-phase flow in nanocapillaries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
陶醉的蜜蜂完成签到,获得积分10
24秒前
28秒前
jennie完成签到 ,获得积分10
28秒前
韦老虎发布了新的文献求助10
33秒前
36秒前
赫连涵柏完成签到,获得积分10
42秒前
CharlotteBlue应助MacTavish采纳,获得30
43秒前
酷波er应助juju采纳,获得10
49秒前
jackone完成签到,获得积分10
56秒前
1分钟前
1分钟前
1分钟前
三千弱水为君饮完成签到,获得积分20
1分钟前
阿波罗完成签到 ,获得积分10
2分钟前
juju发布了新的文献求助10
2分钟前
juju完成签到,获得积分20
2分钟前
CharlotteBlue应助韦老虎采纳,获得10
3分钟前
CharlotteBlue应助韦老虎采纳,获得10
3分钟前
oncoma完成签到 ,获得积分10
3分钟前
5分钟前
现代夏青完成签到 ,获得积分10
5分钟前
长欢发布了新的文献求助10
5分钟前
长欢完成签到,获得积分10
5分钟前
韦老虎发布了新的文献求助10
5分钟前
充电宝应助科研通管家采纳,获得10
6分钟前
6分钟前
wangliangyu完成签到,获得积分20
6分钟前
Chief完成签到,获得积分10
6分钟前
6分钟前
郑牛牛发布了新的文献求助10
6分钟前
7分钟前
流星发布了新的文献求助20
7分钟前
7分钟前
风趣的冬卉完成签到 ,获得积分10
7分钟前
7分钟前
7分钟前
失眠的之桃完成签到 ,获得积分10
7分钟前
炙热的渊思完成签到,获得积分10
8分钟前
8分钟前
高分求助中
Teaching Social and Emotional Learning in Physical Education 900
Gymnastik für die Jugend 600
Chinese-English Translation Lexicon Version 3.0 500
Electronic Structure Calculations and Structure-Property Relationships on Aromatic Nitro Compounds 500
マンネンタケ科植物由来メロテルペノイド類の網羅的全合成/Collective Synthesis of Meroterpenoids Derived from Ganoderma Family 500
[Lambert-Eaton syndrome without calcium channel autoantibodies] 440
Plesiosaur extinction cycles; events that mark the beginning, middle and end of the Cretaceous 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2384333
求助须知:如何正确求助?哪些是违规求助? 2091268
关于积分的说明 5257866
捐赠科研通 1818144
什么是DOI,文献DOI怎么找? 906952
版权声明 559082
科研通“疑难数据库(出版商)”最低求助积分说明 484243