下调和上调
细胞凋亡
脊髓损伤
标记法
医学
药理学
半胱氨酸蛋白酶3
神经保护
脊髓
体内
化学
生物
程序性细胞死亡
生物化学
精神科
生物技术
基因
标识
DOI:10.1016/j.biopha.2017.02.077
摘要
Electro-acupuncture (EA) has been proven to contribute towards neurologic and functional recoveries in spinal cord injury (SCI), but the underlying mechanism remains largely unknown especially regarding the effects of preventing neuronal apoptosis and alleviating neuropathic pain involved in the development of EA. In this study, we evaluated the effect of EA treatment in an animal model of SCI using the Basso, Beattie, and Bresnahan (BBB) score method, lesion volume by cresyl violet staining and neuronal apoptosis by TUNEL staining. Our results showed that EA therapy improved functional recovery, and reduced tissue loss and neuronal apoptosis after SCI. Meanwhile, we found that proapoptotic proteins (cleaved-caspase-3, 9 and cleaved-PARP) were downregulated and antiapoptotic protein Bcl-2 was upregulated following EA. To further explore the antiapoptotic effect of EA treatment, we verified that a large set of microRNAs (miRNAs) expression were altered following EA treatment and the miR-214 was one of the miRNAs being most significantly upregulated. Importantly, we validated both apoptosis related protein Bax and pain related protein Nav1.3 as two functional targets of miR-214 in vitro and vivo. Furthermore, our data showed that EA attenuates SCI-induced Nav1.3 and Bax upregulation in injured spinal cord via upregulating miR-214. These results suggest that miR-214 played an important role after SCI in the process of EA therapy, and the miR-214 could become an attractive novel therapeutic target for the treatment of SCI.
科研通智能强力驱动
Strongly Powered by AbleSci AI