异质结
材料科学
光致发光
拉曼光谱
化学气相沉积
纳米结构
纳米技术
纳米光子学
半导体
纳米电子学
光电子学
表征(材料科学)
光学
物理
作者
Xueping Wu,Honglai Li,Hongjun Liu,Xiujuan Zhuang,Xiao Wang,Xiaopeng Fan,Xidong Duan,Xiaoli Zhu,Qinglin Zhang,Alfred J. Meixner,Xiangfeng Duan,Anlian Pan
出处
期刊:Nanoscale
[Royal Society of Chemistry]
日期:2017-01-01
卷期号:9 (14): 4707-4712
被引量:39
摘要
Controllable synthesis of two-dimensional (2D) transition-metal dichalcogenides (TMDs) with tunable bandgaps is vital for their applications in nanophotonics, due to its efficient modulation of the physical and chemical properties of these atomic layered nanostructures. Here we report for the first time, the controllable synthesis of spatially composition-modulated WS2xSe2(1−x) nanosheets and WS2–WS2xSe2(1−x) lateral heterostructures by a developed one-step chemical vapor deposition (CVD) approach, as well as the understanding of their growth mechanism. During the growth, the composition was optically tuned along the plane of the atomic layered nanosheets through the precise control of evaporation sources. Microstructure characterization confirms the chemical identity of the composition modulated nanosheets, with S and Se contents gradually converting from the center to the edge. Local photoluminescence (PL) and Raman studies further demonstrate the position-dependent optical properties of the as-grown nanosheets, with the PL peak and Raman modes shifting in a wide range along the whole plane of the nanostructures, which are consistent with their tunable compositions and bandgaps. This demonstration of composition-modulated nanostructures provides a beneficial approach for the preparation of 2D semiconductor heterostructures and may open up a wide range of applications in nanoelectronics and optoelectronics.
科研通智能强力驱动
Strongly Powered by AbleSci AI