限制
金属锂
电解质
相间
材料科学
锂(药物)
金属
阳极
无量纲量
动力学
限制电流
化学工程
导电体
理论(学习稳定性)
速率决定步骤
快离子导体
纳米技术
动力控制
热力学
钛酸锂
离子
电流密度
化学
作者
Jin Zhang,Peter W. Voorhees
标识
DOI:10.1021/acsenergylett.5c03690
摘要
Achieving stable lithium metal anodes requires control over the solid-electrolyte interphase (SEI) and desolvation kinetics. Here, we develop a unified theoretical framework integrating ion transport, desolvation, charge transfer, and SEI breakdown to predict morphological instabilities during electrodeposition. Using linear stability analysis, we identify six dimensionless parameters that govern the onset and evolution of instabilities. We show that SEI transport and desolvation rate effectively modulate apparent reaction kinetics, shifting the system toward a stable, reaction-limited regime. Extending the classical limiting current concept, we demonstrate that a thick, poorly conductive SEI and sluggish desolvation significantly reduce the limiting current. We introduce an apparent Damköhler number to quantify the critical balance: suppressing diffusion-limited instabilities by reaction rate reduction, while maintaining a high limiting current. Our theory enables predictive mapping of electrodeposition morphologies across diverse materials and operating conditions, guiding the rational design of stable lithium metal anodes.
科研通智能强力驱动
Strongly Powered by AbleSci AI