Two-Component Signal Transduction in Bacillus subtilis: How One Organism Sees Its World

枯草芽孢杆菌 细胞生物学 有机体 突变体 基因
作者
Céline Fabret,Victoria A. Feher,James A. Hoch
出处
期刊:Journal of Bacteriology [American Society for Microbiology]
卷期号:181 (7): 1975-1983 被引量:325
标识
DOI:10.1128/jb.181.7.1975-1983.1999
摘要

Variability and adaptability are crucial characteristics of organisms possessing the ability to survive and prosper in a wide variety of environmental conditions. The most adaptable bacteria contain a large reservoir of genetic information encoding biochemical pathways designed to cope with a variety of environmental situations. Organisms that have the genetic capability to respond to altered conditions do so when stimulated by specific signals. Recognition of specific signals and conversion of this information into specific transcriptional or behavioral responses is the essence of signal transduction. A mechanism commonly found in bacteria for signal transduction is the two-component system (23, 26). Its basis is the conversion of signal recognition to a chemical entity, i.e., a phosphoryl group, that modifies the functional activity of proteins. Signal recognition and transduction are the province of the sensor histidine kinase component of the system. This protein has separable sensor and histidine phosphotransferase domains that function to recognize (bind) the signal, causing the kinase to autophosphorylate a histidine residue of the phosphotransferase domain (Fig. ​(Fig.1).1). The phosphoryl group is subsequently transferred to the second component protein, the response regulator, where it resides as an acyl phosphate of an aspartic acid residue. The response regulator consists of the phosphorylatable aspartate domain and an output domain that is activated to carry out its function by conformational or, perhaps, electrostatic alterations induced by the phosphoryl group. In most cases, the response regulator is a transcription activator for genes whose products are specifically utilized to respond to the unique nature of a given input signal. In the chemotaxis system of bacteria, the response regulator determines the direction of rotation of the flagellar motor. The basics of the signal transduction mechanism remain the same regardless of the input signal or the function of the response regulator. FIG. 1 Schematic view of two-component and phosphorelay systems. Activation signals recognized by sensor domains of histidine kinases result in autophosphorylation of a histidine in the histidine phosphotransferase domain (His PTase). The phosphoryl group (P) ... This phosphoryl group-based signal transduction mechanism exists in two major conformations in microorganisms: the two-component system and a four-component system termed the phosphorelay (Fig. ​(Fig.1).1). Signal interpretation and transduction by histidine kinases are the same in both, but the target of the kinase in a phosphorelay is a single-domain response regulator consisting of only the phosphorylated aspartate domain. This phosphorylated protein serves as a substrate for a phosphotransferase that transfers the phosphoryl group to a response regulator-transcription factor. The phosphotransferase is transiently phosphorylated on a histidine during this process. In a phosphorelay, the phosphoryl group is transferred in the order His-Asp-His-Asp, which differs from the His-Asp series of a two-component system. In the first-discovered phosphorelay used to initiate sporulation in Bacillus subtilis, all of the components (domains) reside on different proteins (4). Subsequently discovered phosphorelays in bacteria, fungi, and plants use composite proteins where the kinase and first response regulator domain and sometimes the phosphotransferase domain are contiguous within a single polypeptide chain (1, 6). The sporulation initiation phosphorelay is a signal integration circuit that processes both positive and negative signals, which suggests that phosphorelays are used where a number of opposing signals must be interpreted by the signal transduction system (22).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助一一采纳,获得10
1秒前
Tysonqu完成签到,获得积分10
2秒前
aowu发布了新的文献求助10
2秒前
完美世界应助小星星668采纳,获得10
3秒前
swy完成签到,获得积分10
3秒前
乌冬面完成签到,获得积分10
3秒前
5秒前
6秒前
逍遥猪皮完成签到,获得积分10
6秒前
hh完成签到 ,获得积分20
8秒前
冷静妙海完成签到,获得积分10
9秒前
adverse发布了新的文献求助10
9秒前
9秒前
WZH完成签到,获得积分10
10秒前
apex完成签到 ,获得积分10
10秒前
wbhou发布了新的文献求助10
11秒前
無端完成签到 ,获得积分10
13秒前
搜集达人应助超级日光采纳,获得10
16秒前
欣喜的人龙完成签到 ,获得积分10
17秒前
她说肚子是吃大的i完成签到,获得积分10
17秒前
CodeCraft应助小凯采纳,获得10
18秒前
YueXiaojing发布了新的文献求助30
19秒前
李思繁发布了新的文献求助30
19秒前
20秒前
JamesPei应助美好斓采纳,获得30
20秒前
20秒前
michael发布了新的文献求助10
21秒前
晶晶宝贝的完成签到 ,获得积分10
22秒前
经锦程完成签到,获得积分20
25秒前
bzssyy完成签到,获得积分20
25秒前
26秒前
写个锤子完成签到,获得积分10
26秒前
忆_完成签到 ,获得积分10
31秒前
31秒前
查亮亮完成签到,获得积分10
31秒前
32秒前
hh发布了新的文献求助10
34秒前
裴雅柔完成签到,获得积分10
36秒前
36秒前
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5539792
求助须知:如何正确求助?哪些是违规求助? 4626553
关于积分的说明 14599759
捐赠科研通 4567423
什么是DOI,文献DOI怎么找? 2504037
邀请新用户注册赠送积分活动 1481750
关于科研通互助平台的介绍 1453372