亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Stability and physical properties of alkylsilane and alkylphosphonate self-assembled monolayer (SAM) films on metal oxide substrates characterized at the micro- and nanoscale

接触角 X射线光电子能谱 单层 化学 自组装单层膜 表面能 氧化物 分析化学(期刊) 傅里叶变换红外光谱 化学工程 坐滴法 材料科学 纳米技术 有机化学 物理化学 复合材料 工程类
作者
Enamul Hoque
标识
DOI:10.5075/epfl-thesis-3734
摘要

Self-assembled monolayer (SAM) films have attracted immense attention for both fundamental and applied research. A SAM is composed of a large number of molecules with a head group that chemisorbs onto a substrate, a tail group that interacts with the outer surface of the film, and a spacer (backbone) chain group that connects the head and tail groups resulting in a coating. Interactions between spacer groups of different molecules, such as van der Waals forces and/or hydrogen bonding, hasten SAM film formation and contribute to its stability. In this dissertation, SAM and thin films have been formed onto copper and aluminum oxide surfaces by reaction with 1H,1H,2H,2H-perfluorodecyldimethylchlorosilane (PFMS), 1H,1H,2H,2H-perfluorodecyltrichlorosilane (PFTS), 1H,1H,2H,2H-perfluorodecylphosphonic acid (PFDP), octylphosphonic acid (OP), decylphosphonic acid (DP), and octadecylphosphonic acid (ODP). The properties and stability of the films were investigated employing complementary surface analysis techniques: X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), friction force microscopy (FFM), a derivative of AFM, contact angle measurements (CAMs), and Fourier transform infrared reflection/absorption spectroscopy (FT-IRRAS). The perfluoroalkylsilane SAM on Cu is found to be extremely hydrophobic typically having sessile drop static contact angles of more than 130° for pure water and a surface energy of 14 mJ/m2 (mN/m). FFM showed a significant reduction in the adhesive force and friction coefficient of PFMS modified Cu (PFMS/Cu) compared to unmodified Cu. Treatment by exposure to harsh conditions showed that PFMS/Cu SAM can withstand boiling nitric acid (pH=1.8), boiling water, and warm sodium hydroxide (pH=12, 60 °C) solutions for at least 30 minutes. Furthermore, no SAM degradation was observed when PFMS/Cu was exposed to warm nitric acid solution for up to 70 min at 60 °C or 50 min at 80 °C. XPS and FT-IRRAS data reveal a coordination of the PFMS silicon (Si) atom with a cuprate (CuO) molecule present on the oxidized copper substrate. The data give good evidence that the stability of the SAM film on the PFMS modified oxidized Cu surface is largely due to the formation of a siloxy-copper (-Si-O-Cu-) bond via a condensation reaction between silanol (-Si-OH) and copper hydroxide (CuOH). For a PFTS modified Cu surface (PFTS/Cu), the sessile drop static contact angle of pure water has been measured to be more than 125° and the surface energy to be typically less than 16 mJ/m2. Stability tests show that the PFTS/Cu film can survive in boiling pure water for one hour, boiling nitric acid (pH 1.5 or 1.8) for 30 minutes, sodium hydroxide solution (pH 12, 70 °C) for 30 minutes, and autoclave conditions (steam at 134 °C and 3 atmospheres) for 15 minutes. The more commonly used self-assembled monolayer (SAM) modifications of Cu surfaces, e.g. thiol compounds, are significantly less stable than PFTS/Cu. Extremely hydrophobic (low surface energy) and stable PFMS/Cu SAMs and PFTS/Cu films could be useful as corrosion inhibitors in micro/nanoelectronic devices and/or as promoters for anti-wetting, low adhesion surfaces or drop-wise condensation on heat exchange surfaces. XPS analysis confirmed the presence of perfluorinated and non-perfluorinated alkylphosphonate molecules on the PFDP, DP, and ODP SAMs deposited at the aluminum oxide coated silicon (Al/Si) surfaces. The sessile drop static contact angle of pure water on PFDP SAMs was typically more than 130° and on DP and ODP typically more than 125° indicating that the phosphonic acid SAMs reacted with Al samples were very hydrophobic. The surface roughness for PFDP/Al, DP/Al, ODP/Al, and bare Al was approximately 35 nm, as determined by AFM. The surface energy for PFDP/Al was determined to be approximately 11 mJ/m2 by the Zisman plot method compared to 21 mJ/m2 and 20 mJ/m2 for DP/Al and ODP/Al, respectively. PFDP/Al gave the lowest adhesion and friction force while bare Al gave the highest. The adhesion and friction forces for ODP/Al and DP/Al SAMs were in between. ODP, DP, and OP SAMs have been studied in detail on relatively flat aluminum oxide surfaces. The rms surface roughness for ODP/Al, DP/Al, OP/Al, and bare Al was less than 15 nm, as determined by AFM. The sessile drop static contact angle of pure water on ODP/Al and DP/Al was typically more than 115° and on OP/Al typically less than 105°. The surface energy for ODP/Al and DP/Al was determined to be approximately 21 mJ/m2 and 22 mJ/m2, respectively, compared to 26 mJ/m2 for OP/Al. ODP/Al and OP/Al were studied by FFM to better understand their micro-/nano-tribological properties. ODP/Al gave the lowest coefficient of friction values while bare Al gave the highest. The adhesion forces for ODP/Al and OP/Al were comparable. The chemical stability of ODP/Al, PFDP/Al, DP/Al, OP/Al, and PFMS/Al SAMs has been inspected by exposure to warm nitric acid (pH 1.8, 30 min, 60-95 °C). The XPS data and stability against harsh chemical conditions indicate that a type of bond forms between a phosphonic acid (PA) or silane molecule and the oxidized Al surface. Stability tests using warm nitric acid (pH 1.8, 30 min, 60-95 °C) show ODP/Al SAMs to be most stable followed by PFDP/Al, DP/Al, PFMS/Al, and OP/Al SAMs. For PFTS/Al, stability tests demonstrate that modified aluminum is able to survive exposure to warm nitric acid (pH = 1.8, 60 °C, 30 min) indicating some degree of robustness. Hydrophobic, low adhesion, and robust aluminum surfaces have useful applications for micro/nano-electromechanical systems (MEMS/NEMS), such as digital micro-mirror devices (DMDs). These studies are expected to aid in the design and selection of proper lubricants for MEMS/NEMS.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DreamMaker完成签到,获得积分10
3秒前
9秒前
10秒前
小马甲应助诚心文博采纳,获得10
12秒前
量子星尘发布了新的文献求助10
16秒前
36秒前
48秒前
酷波er应助cc采纳,获得10
50秒前
Yvette2024发布了新的文献求助10
56秒前
58秒前
58秒前
诚心文博发布了新的文献求助10
1分钟前
Yvette2024完成签到,获得积分10
1分钟前
cc发布了新的文献求助10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
mumumuzzz发布了新的文献求助10
1分钟前
cc完成签到,获得积分10
1分钟前
1分钟前
快乐听南发布了新的文献求助30
1分钟前
1分钟前
1分钟前
哇达西哇发布了新的文献求助10
1分钟前
科研通AI2S应助哇达西哇采纳,获得10
2分钟前
NexusExplorer应助miku1采纳,获得10
2分钟前
2分钟前
miku1发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
Jayzie完成签到 ,获得积分10
3分钟前
3分钟前
燚龘发布了新的文献求助10
3分钟前
zhangxiaopan完成签到,获得积分10
3分钟前
激动的似狮完成签到,获得积分10
3分钟前
Jessica发布了新的文献求助10
4分钟前
牧沛凝完成签到 ,获得积分10
4分钟前
Jessica完成签到,获得积分10
4分钟前
lby关闭了lby文献求助
4分钟前
SYLH应助zhangxiaopan采纳,获得10
4分钟前
4分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 740
2024-2030年中国石英材料行业市场竞争现状及未来趋势研判报告 500
镇江南郊八公洞林区鸟类生态位研究 500
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4142874
求助须知:如何正确求助?哪些是违规求助? 3679083
关于积分的说明 11627763
捐赠科研通 3372547
什么是DOI,文献DOI怎么找? 1852392
邀请新用户注册赠送积分活动 915180
科研通“疑难数据库(出版商)”最低求助积分说明 829680