Conditional density-based analysis of T cell signaling in single-cell data

细胞生物学 单细胞分析 生物 信号转导 质量细胞仪 功能(生物学) 细胞信号 抗原 计算生物学 细胞 系统生物学 计算机科学 免疫学 表型 生物化学 基因
作者
Smita Krishnaswamy,Matthew H. Spitzer,Michaël Mingueneau,Sean C. Bendall,Oren Litvin,Erica L. Stone,Dana Pe’er,Garry P. Nolan
出处
期刊:Science [American Association for the Advancement of Science]
卷期号:346 (6213) 被引量:228
标识
DOI:10.1126/science.1250689
摘要

Cellular circuits sense the environment, process signals, and compute decisions using networks of interacting proteins. To model such a system, the abundance of each activated protein species can be described as a stochastic function of the abundance of other proteins. High-dimensional single-cell technologies, such as mass cytometry, offer an opportunity to characterize signaling circuit-wide. However, the challenge of developing and applying computational approaches to interpret such complex data remains. Here, we developed computational methods, based on established statistical concepts, to characterize signaling network relationships by quantifying the strengths of network edges and deriving signaling response functions. In comparing signaling between naïve and antigen-exposed CD4 + T lymphocytes, we find that although these two cell subtypes had similarly wired networks, naïve cells transmitted more information along a key signaling cascade than did antigen-exposed cells. We validated our characterization on mice lacking the extracellular-regulated mitogen-activated protein kinase (MAPK) ERK2, which showed stronger influence of pERK on pS6 (phosphorylated-ribosomal protein S6), in naïve cells as compared with antigen-exposed cells, as predicted. We demonstrate that by using cell-to-cell variation inherent in single-cell data, we can derive response functions underlying molecular circuits and drive the understanding of how cells process signals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
organicdog发布了新的文献求助10
刚刚
1秒前
乐观凡梅发布了新的文献求助10
2秒前
2秒前
JamesPei应助感动归尘采纳,获得10
3秒前
小马甲应助myf采纳,获得10
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
Hello应助科研通管家采纳,获得10
3秒前
miaomiao发布了新的文献求助10
4秒前
Zx_1993应助科研通管家采纳,获得20
4秒前
科研通AI5应助完美的tuzi采纳,获得10
4秒前
华仔应助科研通管家采纳,获得10
4秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
4秒前
李爱国应助科研通管家采纳,获得10
4秒前
完美世界应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
赘婿应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
赘婿应助科研通管家采纳,获得10
5秒前
劉劉完成签到 ,获得积分10
5秒前
林林林发布了新的文献求助10
5秒前
7秒前
Ranch0发布了新的文献求助10
7秒前
李爱国应助彩色的台灯采纳,获得30
8秒前
微笑向卉发布了新的文献求助10
9秒前
10秒前
10秒前
jingjing发布了新的文献求助10
11秒前
ljq发布了新的文献求助10
13秒前
13秒前
满满发布了新的文献求助10
14秒前
乔木发布了新的文献求助10
17秒前
17秒前
研友_VZG7GZ应助北北采纳,获得10
17秒前
18秒前
aa完成签到,获得积分10
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5194958
求助须知:如何正确求助?哪些是违规求助? 4377124
关于积分的说明 13631420
捐赠科研通 4232342
什么是DOI,文献DOI怎么找? 2321565
邀请新用户注册赠送积分活动 1319686
关于科研通互助平台的介绍 1270113