化学
纳米凝胶
透明质酸
药物输送
细胞毒性
靶向给药
药品
紫杉醇
纳米载体
癌细胞
药理学
生物化学
癌症
体外
生物
有机化学
遗传学
作者
Xin Wei,Thulani H. Senanayake,Galya Warren,Serguei V. Vinogradov
摘要
Many drug-resistant tumors and cancer stem cells (CSC) express elevated levels of CD44 receptor, a cellular glycoprotein binding hyaluronic acid (HA). Here, we report the synthesis of nanogel–drug conjugates based on membranotropic cholesteryl-HA (CHA) for efficient targeting and suppression of drug-resistant tumors. These conjugates significantly increased the bioavailability of poorly soluble drugs with previously reported activity against CSC, such as etoposide, salinomycin, and curcumin. The small nanogel particles (diameter 20–40 nm) with a hydrophobic core and high drug loads (up to 20%) formed after ultrasonication and demonstrated a sustained drug release following the hydrolysis of biodegradable ester linkage. Importantly, CHA–drug nanogels demonstrated 2–7 times higher cytotoxicity in CD44-expressing drug-resistant human breast and pancreatic adenocarcinoma cells compared to that of free drugs and nonmodified HA–drug conjugates. These nanogels were efficiently internalized via CD44 receptor-mediated endocytosis and simultaneous interaction with the cancer cell membrane. Anchoring by cholesterol moieties in the cellular membrane after nanogel unfolding evidently caused more efficient drug accumulation in cancer cells compared to that in nonmodified HA–drug conjugates. CHA–drug nanogels were able to penetrate multicellular cancer spheroids and displayed a higher cytotoxic effect in the system modeling tumor environment than both free drugs and HA–drug conjugates. In conclusion, the proposed design of nanogel–drug conjugates allowed us to significantly enhance drug bioavailability, cancer cell targeting, and the treatment efficacy against drug-resistant cancer cells and multicellular spheroids.
科研通智能强力驱动
Strongly Powered by AbleSci AI