材料科学
有限元法
介观物理学
各向异性
均质化(气候)
多尺度建模
可塑性
纳米压痕
本构方程
微观力学
机械
晶体塑性
微尺度化学
经典力学
结构工程
复合材料
凝聚态物理
数学
物理
工程类
光学
生物多样性
数学教育
计算化学
化学
复合数
生物
生态学
作者
Franz Roters,Philip Eisenlohr,L. Hantcherli,D. D. Tjahjanto,Thomas R. Bieler,Dierk Raabe
出处
期刊:Acta Materialia
[Elsevier BV]
日期:2009-12-12
卷期号:58 (4): 1152-1211
被引量:1849
标识
DOI:10.1016/j.actamat.2009.10.058
摘要
This article reviews continuum-based variational formulations for describing the elastic–plastic deformation of anisotropic heterogeneous crystalline matter. These approaches, commonly referred to as crystal plasticity finite-element models, are important both for basic microstructure-based mechanical predictions as well as for engineering design and performance simulations involving anisotropic media. Besides the discussion of the constitutive laws, kinematics, homogenization schemes and multiscale approaches behind these methods, we also present some examples, including, in particular, comparisons of the predictions with experiments. The applications stem from such diverse fields as orientation stability, microbeam bending, single-crystal and bicrystal deformation, nanoindentation, recrystallization, multiphase steel (TRIP) deformation, and damage prediction for the microscopic and mesoscopic scales and multiscale predictions of rolling textures, cup drawing, Lankfort (r) values and stamping simulations for the macroscopic scale.
科研通智能强力驱动
Strongly Powered by AbleSci AI