化学
木质素
三聚体
单体
部分
立体化学
松柏醇
突变体
阿魏酸
咖啡酸
二聚体
生物化学
有机化学
聚合物
抗氧化剂
基因
作者
Syed Moinuddin,Michaël Jourdes,Dhrubojyoti D. Laskar,C Ki,Claudia L. Cardenas,Kye‐Won Kim,Dianzhong Zhang,Laurence Davin,Norman Lewis
摘要
The Arabidopsis mutant Atomt1 lignin differs from native lignin in wild type plants, in terms of sinapyl (S) alcohol-derived substructures in fiber cell walls being substituted by 5-hydroxyconiferyl alcohol (5OHG)-derived moieties. During programmed lignin assembly, these engender formation of benzodioxane substructures due to intramolecular cyclization of their quinone methides that are transiently formed following 8-O-4′ radical-radical coupling. Thioacidolytic cleavage of the 8-O-4′ inter-unit linkages in the Atomt1 mutant, relative to the wild type, indicated that cleavable sinapyl (S) and coniferyl (G) alcohol-derived monomeric moieties were stoichiometrically reduced by a circa 2 : 1 ratio. Additionally, lignin degradative analysis resulted in release of a 5OHG–5OHG–G trimer from the Atomt1 mutant, which then underwent further cleavage. Significantly, the trimeric moiety released provides new insight into lignin primary structure: during polymer assembly, the first 5OHG moiety is linked via a C8–O–X inter-unit linkage, whereas subsequent addition of monomers apparently involves sequential addition of 5OHG and G moieties to the growing chain in a 2 : 1 overall stoichiometry. This quantification data thus provides further insight into how inter-unit linkage frequencies in native lignins are apparently conserved (or near conserved) during assembly in both instances, as well as providing additional impetus to resolve how the overall question of lignin macromolecular assembly is controlled in terms of both type of monomer addition and primary sequence.
科研通智能强力驱动
Strongly Powered by AbleSci AI