Aluminum is a metal that is known to impact fish species. The zebrafish has been used as an attractive model for toxicology and behavioral studies, being considered a model to study environmental exposures and human pathologies. In the present study, we have investigated the effect of aluminum exposure on brain acetylcholinesterase activity and behavioral parameters in zebrafish. In vivo exposure of zebrafish to 50 μg/L AlCl3 for 96 h at pH 5.8 significantly increased (36%) acetylthiocholine hydrolysis in zebrafish brain. There were no changes in acetylcholinesterase (AChE) activity when fish were exposed to the same concentration of AlCl3 at pH 6.8. In vitro concentrations of AlCl3 varying from 50 to 250 μM increased AChE activity (28% to 33%, respectively). Moreover, we observed that animals exposed to AlCl3 at pH 5.8 presented a significant decrease in locomotor activity, as evaluated by the number of line crossings (25%), distance traveled (14.1%), and maximum speed (24%) besides an increase in the absolute turn angle (12.7%). These results indicate that sublethal levels of aluminum might modify behavioral parameters and acetylcholinesterase activity in zebrafish brain.