Improving the efficiency of CHO cell line generation using glutamine synthetase gene knockout cells

中国仓鼠卵巢细胞 生物 细胞培养 基因敲除 谷氨酰胺合成酶 人口 基因表达 分子生物学 基因 谷氨酰胺 遗传学 氨基酸 社会学 人口学
作者
Lianchun Fan,Ibrahim Kadura,Lara E. Krebs,Christopher Hatfield,Margaret Shaw,Christopher C. Frye
出处
期刊:Biotechnology and Bioengineering [Wiley]
卷期号:109 (4): 1007-1015 被引量:115
标识
DOI:10.1002/bit.24365
摘要

Abstract Although Chinese hamster ovary (CHO) cells, with their unique characteristics, have become a major workhorse for the manufacture of therapeutic recombinant proteins, one of the major challenges in CHO cell line generation (CLG) is how to efficiently identify those rare, high‐producing clones among a large population of low‐ and non‐productive clones. It is not unusual that several hundred individual clones need to be screened for the identification of a commercial clonal cell line with acceptable productivity and growth profile making the cell line appropriate for commercial application. This inefficiency makes the process of CLG both time consuming and laborious. Currently, there are two main CHO expression systems, dihydrofolate reductase (DHFR)‐based methotrexate (MTX) selection and glutamine synthetase (GS)‐based methionine sulfoximine (MSX) selection, that have been in wide industrial use. Since selection of recombinant cell lines in the GS‐CHO system is based on the balance between the expression of the GS gene introduced by the expression plasmid and the addition of the GS inhibitor, L‐MSX, the expression of GS from the endogenous GS gene in parental CHOK1SV cells will likely interfere with the selection process. To study endogenous GS expression's potential impact on selection efficiency, GS‐knockout CHOK1SV cell lines were generated using the zinc finger nuclease (ZFN) technology designed to specifically target the endogenous CHO GS gene. The high efficiency (∼2%) of bi‐allelic modification on the CHO GS gene supports the unique advantages of the ZFN technology, especially in CHO cells. GS enzyme function disruption was confirmed by the observation of glutamine‐dependent growth of all GS‐knockout cell lines. Full evaluation of the GS‐knockout cell lines in a standard industrial cell culture process was performed. Bulk culture productivity improved two‐ to three‐fold through the use of GS‐knockout cells as parent cells. The selection stringency was significantly increased, as indicated by the large reduction of non‐producing and low‐producing cells after 25 µM L‐MSX selection, and resulted in a six‐fold efficiency improvement in identifying similar numbers of high‐productive cell lines for a given recombinant monoclonal antibody. The potential impact of GS‐knockout cells on recombinant protein quality is also discussed. Biotechnol. Bioeng. 2012; 109:1007–1015. © 2011 Wiley Periodicals, Inc.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
3秒前
cdercder应助xiaoyan采纳,获得10
5秒前
5秒前
7秒前
小黎完成签到,获得积分10
8秒前
8秒前
8秒前
积极完成签到 ,获得积分10
8秒前
wuy发布了新的文献求助10
9秒前
小蘑菇应助leigh采纳,获得10
10秒前
10秒前
11秒前
12秒前
12秒前
归海亦云发布了新的文献求助10
13秒前
13秒前
小于发布了新的文献求助10
13秒前
14秒前
lizhiqian2024发布了新的文献求助10
14秒前
15秒前
虚幻的采枫完成签到 ,获得积分10
16秒前
17秒前
18秒前
学术小虫发布了新的文献求助10
18秒前
cdercder应助xiaoyan采纳,获得10
19秒前
jbtjht发布了新的文献求助10
19秒前
19秒前
111发布了新的文献求助10
21秒前
22秒前
开心幻巧发布了新的文献求助10
23秒前
soapffz完成签到,获得积分10
25秒前
上官若男应助jbtjht采纳,获得10
25秒前
zzzzz发布了新的文献求助10
25秒前
小大夫完成签到 ,获得积分10
25秒前
big ben发布了新的文献求助10
26秒前
李健应助小药丸采纳,获得10
26秒前
蒲月初七完成签到 ,获得积分10
26秒前
leigh发布了新的文献求助10
27秒前
epicmous关注了科研通微信公众号
27秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3802485
求助须知:如何正确求助?哪些是违规求助? 3348111
关于积分的说明 10336668
捐赠科研通 3064039
什么是DOI,文献DOI怎么找? 1682365
邀请新用户注册赠送积分活动 808078
科研通“疑难数据库(出版商)”最低求助积分说明 763997