Optimization of Nanostructured Copper Sulfide to Achieve Enhanced Enzyme-Mimic Activities for Improving Anti-Infection Performance

材料科学 抗坏血酸 硫化铜 纳米材料基催化剂 过氧化氢 纳米技术 催化作用 抗菌活性 硫化物 硫黄 纳米颗粒 组合化学 细菌 化学 生物化学 生物 冶金 遗传学 食品科学
作者
Yaming Zhou,Zhou Chen,Sen Zeng,Chufan Wang,Wenlong Li,Miao Wang,Xiumin Wang,Xi Zhou,Xueqin Zhao,Lei Ren
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:13 (45): 53659-53670 被引量:15
标识
DOI:10.1021/acsami.1c17985
摘要

Advanced antibacterial methods are urgently needed to deal with possible infectious diseases. As promising alternatives to antibiotics, enzyme-mimic nanocatalysts face bottlenecks of low activities and indistinct catalytic mechanisms, which seriously restrict their development for anti-infection treatment. Herein, metastable copper sulfide (Cu2-xS) nanozymes with diversiform sizes and compositions were selected to adjust the electronic structure for enhancing enzyme-mimic activities. The as-synthesized large and thin nanoplates (L/TN nanoplates), with the stoichiometric ratio of Cu1.25S, were proven to possess the optimal peroxidase (POD)-mimic activity. Using quantum mechanics, it was theoretically revealed that the sulfur vacancies could alter the electronic structure of copper active sites and thus reduce the reaction energy barrier of H2O2 to·OH to promote the POD-mimic performance. Moreover, through enhanced enzyme-mimic activities, L/TN nanoplates achieved efficient depletion of glutathione and ascorbic acid for improving antibacterial performances. Further, synergizing with the NIR irradiation, the satisfactory destruction capability for bacteria and biofilm was achieved for L/TN nanoplates under an inflammatory level of hydrogen peroxide (50 μM). Altogether, this work provides a deeper understanding of geometrical and electronic properties-dependent antibacterial performance, and paves the way toward precise compositions and structures engineering of nanozymes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Agu关闭了Agu文献求助
2秒前
sci发布了新的文献求助10
4秒前
weihuan发布了新的文献求助10
4秒前
老阎应助aqiuyuehe采纳,获得80
7秒前
Owen应助露似珍珠月似弓采纳,获得10
8秒前
艾妮吗完成签到,获得积分10
9秒前
LiShin完成签到,获得积分10
11秒前
13秒前
13秒前
13秒前
swamp完成签到,获得积分10
14秒前
14秒前
可爱的函函应助Silvia采纳,获得10
15秒前
苗觉觉完成签到,获得积分10
16秒前
huzi发布了新的文献求助10
18秒前
pengchen完成签到 ,获得积分10
19秒前
hyfwkd发布了新的文献求助30
19秒前
大模型应助wuran采纳,获得10
20秒前
咚咚完成签到,获得积分10
20秒前
香蕉你个笨啦啦完成签到,获得积分10
21秒前
Servant2023完成签到,获得积分10
22秒前
yuiaa完成签到,获得积分10
23秒前
wing完成签到 ,获得积分10
23秒前
chen完成签到,获得积分10
24秒前
贰鸟应助milly采纳,获得10
24秒前
赘婿应助苗条的晓夏采纳,获得10
25秒前
25秒前
害羞的涵蕾关注了科研通微信公众号
25秒前
26秒前
27秒前
27秒前
30秒前
33秒前
22222发布了新的文献求助30
33秒前
34秒前
wuran发布了新的文献求助10
35秒前
39秒前
mdmdd完成签到,获得积分10
39秒前
彭于晏应助小薛采纳,获得10
39秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 490
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4062952
求助须知:如何正确求助?哪些是违规求助? 3601444
关于积分的说明 11437967
捐赠科研通 3324713
什么是DOI,文献DOI怎么找? 1827766
邀请新用户注册赠送积分活动 898335
科研通“疑难数据库(出版商)”最低求助积分说明 818997