D2MIF: A Malicious Model Detection Mechanism for Federated Learning Empowered Artificial Intelligence of Things

计算机科学 联合学习 人工智能 机器学习 深度学习 物联网
作者
Liu Wenxin,Hui Lin,Xiaoding Wang,Jia Hu,Georges Kaddoum,Md. Jalil Piran,Atif Alamri
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:1
标识
DOI:10.1109/jiot.2021.3081606
摘要

Artificial Intelligence of Things (AIoT), as a fusion of AI and Internet of Things (IoT), has become a new trend to realize the intelligentization of industry 4.0 and the data privacy and security is the key to its successful implementation. To enhance data privacy protection, the federated learning has been introduced in AIoT, which allows participants to jointly train AI models without sharing private data. However, in federated learning, malicious participants might provide malicious models by launching the poisoning attack, which will jeopardize the convergence and accuracy of the global model. To solve this problem, we propose a malicious model detection mechanism based on the isolation forest, named D2MIF, for the federated learning empowered AIoT. In D2MIF, an isolation forest is constructed to compute the malicious score for each model uploaded by the corresponding participant, then the models will be filtered if their malicious scores are higher than the threshold, which is dynamically adjusted using reinforcement learning (RL). The validation experiment is conducted on two public datasets Mnist and Fashion_Mnist. And the experiment results show that the proposed D2MIF can effectively detect malicious models and significantly improve the global model accuracy in federated learning empowered AIoT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HY完成签到,获得积分10
2秒前
2秒前
小虾米完成签到,获得积分10
3秒前
3秒前
3秒前
T1kz4完成签到,获得积分10
3秒前
桐桐应助2577采纳,获得10
3秒前
dididi完成签到,获得积分10
3秒前
4秒前
WYR完成签到 ,获得积分10
4秒前
LL完成签到,获得积分10
4秒前
汉堡包应助哇咔咔采纳,获得10
4秒前
Zhlili完成签到,获得积分10
4秒前
4秒前
彭于彦祖应助锦鲤采纳,获得10
5秒前
开心向真完成签到,获得积分10
5秒前
科目三应助baibaibai采纳,获得10
5秒前
5秒前
Sunrise完成签到,获得积分10
5秒前
狂吃五碗饭完成签到,获得积分10
5秒前
许甜甜鸭应助小金鱼儿采纳,获得10
6秒前
SciGPT应助工兵小蚂蚁采纳,获得10
6秒前
6秒前
7秒前
科研通AI5应助少年采纳,获得10
7秒前
幽默的泥猴桃完成签到,获得积分10
7秒前
shw完成签到,获得积分10
7秒前
kc135完成签到,获得积分10
8秒前
笨笨芯发布了新的文献求助10
8秒前
xiaowan完成签到,获得积分10
8秒前
BiuBiu怪完成签到,获得积分10
8秒前
三里墩头给Qian的求助进行了留言
9秒前
GaoZz完成签到,获得积分10
9秒前
chx2256120完成签到,获得积分10
9秒前
大饼完成签到,获得积分10
9秒前
车灵波完成签到 ,获得积分10
9秒前
hhh发布了新的文献求助30
9秒前
勤劳绿毛龟完成签到,获得积分10
9秒前
抹茶夏天完成签到,获得积分10
10秒前
10秒前
高分求助中
Handbook of Diagnosis and Treatment of DSM-5-TR Personality Disorders 800
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830731
求助须知:如何正确求助?哪些是违规求助? 3373073
关于积分的说明 10477436
捐赠科研通 3093209
什么是DOI,文献DOI怎么找? 1702398
邀请新用户注册赠送积分活动 818982
科研通“疑难数据库(出版商)”最低求助积分说明 771173