An ODE-driven level-set density method for topology optimization

拓扑优化 颂歌 数学优化 数学 缩小 水平集方法 正规化(语言学) 插值(计算机图形学) 拓扑(电路) 算法 计算机科学 有限元法 应用数学 帧(网络) 图像分割 物理 组合数学 人工智能 热力学 分割 电信
作者
Yang Liu,Cheng Yang,Peng Wei,Pingzhang Zhou,Jianbin Du
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier BV]
卷期号:387: 114159-114159 被引量:23
标识
DOI:10.1016/j.cma.2021.114159
摘要

In this paper, a new topology optimization method is discussed. The basic idea consists of exploring a combination of a density-based method together with a level-set description to form a new optimization frame. Due to the level-set description, solutions show clear and smooth boundaries that are deemed more materially efficient. Additionally, the checkerboarding issue, usually paired with an element-wise description, can be avoided. Thus, the filter scheme to tackle this problem becomes unnecessary, and the design space can be further exploited. The ingredient of material interpolation with penalty is utilized here, and its merit lies in making update information (i.e., sensitivity) more distinguished and in turn driving the optimization process to converge into solid–void solutions stably. An ordinary differential equation (ODE) established from optimal criteria builds the relationship between the level-set description and update information, and the structural updating procedure can be efficiently performed by solving the ODE. A regularization scheme for the level-set is introduced to enhance topological variation ability and address topological evolution defects, which helps deliver reasonable and well-posed topological configurations. The regularization strategy is a simple linear scaling manner that proves to be effective and efficient. This paper investigates three classes of optimization problems: compliance minimization, eigenfrequency maximization, and thermal conduction optimization. To validate the proposed method, both 2D and 3D benchmark examples in comparison with the widely accepted Solid Isotropic Material with Penalization (SIMP) method are tested. By contrast, the solutions resulting from the proposed method show advantageous structural representations and better objective function values under specified conditions. In addition, several other numerical examples considering model parameter influences and some extensions are discussed to systematically demonstrate the proposed method’s characteristics. Finally, the MATLAB codes concerning the above-mentioned three classes of optimization problems are shared for educational purposes. The codes are compact and finely structured with only 58, 62, and 53 lines for 2D cases, and 105, 108, and 80 lines for 3D cases of minimum compliance, maximum eigenfrequency, and minimum thermal compliance problems, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
韩soso发布了新的文献求助10
1秒前
菜鸟发布了新的文献求助10
1秒前
1秒前
阿萱发布了新的文献求助10
3秒前
4秒前
4秒前
kkdkg完成签到,获得积分10
4秒前
小Q发布了新的文献求助10
5秒前
言希完成签到,获得积分10
5秒前
5秒前
小豆包发布了新的文献求助10
6秒前
6秒前
柠檬完成签到 ,获得积分10
6秒前
好好学习发布了新的文献求助10
7秒前
Marciu33发布了新的文献求助10
7秒前
8秒前
8秒前
今后应助赫连烙采纳,获得10
9秒前
怡然雨雪发布了新的文献求助10
9秒前
JayWu发布了新的文献求助10
10秒前
saturn发布了新的文献求助10
10秒前
GL发布了新的文献求助10
13秒前
colleenld完成签到,获得积分10
13秒前
小豆包完成签到,获得积分10
14秒前
15秒前
池棠小荷完成签到,获得积分10
15秒前
英俊的铭应助慕雨倾欣采纳,获得10
16秒前
KJ发布了新的文献求助20
18秒前
靓丽冬灵发布了新的文献求助10
19秒前
LeiZha完成签到,获得积分10
19秒前
Binbin完成签到 ,获得积分10
20秒前
20秒前
haha9haha完成签到,获得积分10
22秒前
22秒前
一个大花瓶完成签到 ,获得积分10
23秒前
24秒前
好好学习发布了新的文献求助30
25秒前
26秒前
27秒前
saturn发布了新的文献求助10
27秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 760
2024-2030年中国石英材料行业市场竞争现状及未来趋势研判报告 500
镇江南郊八公洞林区鸟类生态位研究 500
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4147719
求助须知:如何正确求助?哪些是违规求助? 3684352
关于积分的说明 11640733
捐赠科研通 3378235
什么是DOI,文献DOI怎么找? 1853991
邀请新用户注册赠送积分活动 916356
科研通“疑难数据库(出版商)”最低求助积分说明 830271