亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Micro–Computed Tomography–Guided Artificial Intelligence for Pulp Cavity and Tooth Segmentation on Cone-beam Computed Tomography

豪斯多夫距离 基本事实 锥束ct 数据集 Sørensen–骰子系数 数学 计算机断层摄影术 图像分割 人工智能 分割 核医学 计算机科学 模式识别(心理学) 医学 放射科
作者
Xiang Lin,Yujie Fu,Genqiang Ren,Xiaoyu Yang,Wei Duan,Yufei Chen,Qi Zhang
出处
期刊:Journal of Endodontics [Elsevier]
卷期号:47 (12): 1933-1941 被引量:47
标识
DOI:10.1016/j.joen.2021.09.001
摘要

This study proposes a novel data pipeline based on micro-computed tomographic (micro-CT) data for training the U-Net network to realize the automatic and accurate segmentation of the pulp cavity and tooth on cone-beam computed tomographic (CBCT) images.We collected CBCT data and micro-CT data of 30 teeth. CBCT data were processed and transformed into small field of view and high-resolution CBCT images of each tooth. Twenty-five sets were randomly assigned to the training set and the remaining 5 sets to the test set. We used 2 data pipelines for U-Net network training: one manually labeled by an endodontic specialist as the control group and one processed from the micro-CT data as the experimental group. The 3-dimensional models constructed using micro-CT data in the test set were taken as the ground truth. The Dice similarity coefficient, precision rate, recall rate, average symmetric surface distance, Hausdorff distance, and morphologic analysis were used for performance evaluation.The segmentation accuracy of the experimental group measured by the Dice similarity coefficient, precision rate, recall rate, average symmetric surface distance, and Hausdorff distance were 96.20% ± 0.58%, 97.31% ± 0.38%, 95.11% ± 0.97%, 0.09 ± 0.01 mm, and 1.54 ± 0.51 mm in the tooth and 86.75% ± 2.42%, 84.45% ± 7.77%, 89.94% ± 4.56%, 0.08 ± 0.02 mm, and 1.99 ± 0.67 mm in the pulp cavity, respectively, which were better than the control group. Morphologic analysis suggested the segmentation results of the experimental group were better than those of the control group.This study proposed an automatic and accurate approach for tooth and pulp cavity segmentation on CBCT images, which can be applied in research and clinical tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WZQ发布了新的文献求助10
2秒前
福娃哇完成签到 ,获得积分10
9秒前
11秒前
chaoshen发布了新的文献求助10
18秒前
19秒前
jyy完成签到,获得积分10
26秒前
Jasper应助elliotzzz采纳,获得30
29秒前
30秒前
31秒前
31秒前
34秒前
顾矜应助科研通管家采纳,获得10
34秒前
浮游应助科研通管家采纳,获得10
34秒前
浮游应助科研通管家采纳,获得10
34秒前
Criminology34应助科研通管家采纳,获得10
34秒前
浮游应助科研通管家采纳,获得10
34秒前
34秒前
Luckydan发布了新的文献求助10
36秒前
1234发布了新的文献求助10
36秒前
Ava应助矮小的猕猴桃采纳,获得10
36秒前
110o发布了新的文献求助10
39秒前
Olivia完成签到,获得积分10
41秒前
执着的天使完成签到 ,获得积分10
44秒前
44秒前
110o完成签到,获得积分10
46秒前
orixero应助Olivia采纳,获得10
47秒前
50秒前
西瓜汁完成签到,获得积分10
55秒前
充电宝应助1234采纳,获得10
57秒前
57秒前
Simon完成签到,获得积分10
59秒前
Luckydan完成签到,获得积分10
1分钟前
1分钟前
浮游应助辛勤远望采纳,获得30
1分钟前
高高雅青发布了新的文献求助10
1分钟前
Xiaque发布了新的文献求助10
1分钟前
1分钟前
1234完成签到,获得积分10
1分钟前
休斯顿完成签到,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5426294
求助须知:如何正确求助?哪些是违规求助? 4540112
关于积分的说明 14171650
捐赠科研通 4457871
什么是DOI,文献DOI怎么找? 2444698
邀请新用户注册赠送积分活动 1435666
关于科研通互助平台的介绍 1413164