Artificial Intelligence in Undergraduate Medical Education: A Scoping Review

课程 医学教育 检查表 梅德林 移情 包裹体(矿物) 步伐 主题分析 研究生医学教育 心理学 医学 定性研究 教育学 政治学 社会学 社会心理学 精神科 认知心理学 法学 地理 委派 社会科学 大地测量学
作者
Juehea Lee,Annie Siyu Wu,David Li,Kulamakan Mahan Kulasegaram
出处
期刊:Academic Medicine [Lippincott Williams & Wilkins]
卷期号:96 (11S): S62-S70 被引量:19
标识
DOI:10.1097/acm.0000000000004291
摘要

Artificial intelligence (AI) is a rapidly growing phenomenon poised to instigate large-scale changes in medicine. However, medical education has not kept pace with the rapid advancements of AI. Despite several calls to action, the adoption of teaching on AI in undergraduate medical education (UME) has been limited. This scoping review aims to identify gaps and key themes in the peer-reviewed literature on AI training in UME.The scoping review was informed by Arksey and O'Malley's methodology. Seven electronic databases including MEDLINE and EMBASE were searched for articles discussing the inclusion of AI in UME between January 2000 and July 2020. A total of 4,299 articles were independently screened by 3 co-investigators and 22 full-text articles were included. Data were extracted using a standardized checklist. Themes were identified using iterative thematic analysis.The literature addressed: (1) a need for an AI curriculum in UME, (2) recommendations for AI curricular content including machine learning literacy and AI ethics, (3) suggestions for curriculum delivery, (4) an emphasis on cultivating "uniquely human skills" such as empathy in response to AI-driven changes, and (5) challenges with introducing an AI curriculum in UME. However, there was considerable heterogeneity and poor consensus across studies regarding AI curricular content and delivery.Despite the large volume of literature, there is little consensus on what and how to teach AI in UME. Further research is needed to address these discrepancies and create a standardized framework of competencies that can facilitate greater adoption and implementation of a standardized AI curriculum in UME.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Aspirin完成签到,获得积分10
刚刚
刚刚
ljm李完成签到,获得积分20
1秒前
hhye发布了新的文献求助10
1秒前
火星天发布了新的文献求助10
1秒前
天南发布了新的文献求助10
1秒前
xxj发布了新的文献求助10
2秒前
2秒前
无花果应助aliupeifang采纳,获得10
2秒前
2秒前
小超人发布了新的文献求助10
2秒前
3秒前
3秒前
科目三应助Nyxia采纳,获得10
3秒前
LanXiaohong发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
Jasper应助天真大神采纳,获得10
5秒前
善学以致用应助猪猪hero采纳,获得10
5秒前
HEAUBOOK应助巫马采纳,获得10
5秒前
5秒前
sad完成签到,获得积分10
6秒前
小杰完成签到 ,获得积分10
6秒前
7秒前
7秒前
7秒前
小柒发布了新的文献求助10
8秒前
ZCY发布了新的文献求助10
8秒前
8秒前
小小李发布了新的文献求助10
8秒前
9秒前
负责半蕾完成签到,获得积分10
9秒前
luct发布了新的文献求助10
9秒前
翎儿响叮当完成签到 ,获得积分10
10秒前
摸鱼主编magazine完成签到,获得积分10
10秒前
领导范儿应助开朗忆曼采纳,获得10
10秒前
10秒前
李爱国应助涛1采纳,获得10
10秒前
工藤新一完成签到,获得积分10
10秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3806277
求助须知:如何正确求助?哪些是违规求助? 3351028
关于积分的说明 10352662
捐赠科研通 3066937
什么是DOI,文献DOI怎么找? 1684167
邀请新用户注册赠送积分活动 809367
科研通“疑难数据库(出版商)”最低求助积分说明 765487