A Hybrid DenseNet-LSTM Model for Epileptic Seizure Prediction

模式识别(心理学) 人工神经网络 机器学习 脑电图
作者
Sang-Uk Ryu,Inwhee Joe
出处
期刊:Applied Sciences [Multidisciplinary Digital Publishing Institute]
卷期号:11 (16): 7661- 被引量:3
标识
DOI:10.3390/app11167661
摘要

The number of people diagnosed with epilepsy as a common brain disease accounts for about 1% of the world’s total population. Seizure prediction is an important study that can improve the lives of patients with epilepsy, and, in recent years, it has attracted more and more attention. In this paper, we propose a novel hybrid deep learning model that combines a Dense Convolutional Network (DenseNet) and Long Short-Term Memory (LSTM) for epileptic seizure prediction using EEG data. The proposed method first converts the EEG data into the time-frequency domain through Discrete Wavelet Transform (DWT) for use in the input of the model. Then, we train the previously transformed image through a hybrid model combining Densenet and LSTM. To evaluate the performance of the proposed method, experiments are conducted for each preictal length of 5, 10, and 15 min using the CHB-MIT scalp EEG dataset. As a result, we obtained a prediction accuracy of 93.28%, a sensitivity of 92.92%, a specificity of 93.65%, a false positive rate of 0.063 per hour, and an F1-score of 0.923 when the preictal length was 5 min. Finally, as the proposed method is compared to previous studies, it is confirmed that the seizure prediction performance was improved significantly.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
McGrady发布了新的文献求助10
刚刚
yinying发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
3秒前
QXS关闭了QXS文献求助
4秒前
56发布了新的文献求助10
7秒前
panpan完成签到,获得积分10
7秒前
慕青应助李雯采纳,获得10
9秒前
无敌老金刚完成签到 ,获得积分10
9秒前
Jasper应助小熊采纳,获得10
10秒前
10秒前
接心软审稿人完成签到 ,获得积分10
12秒前
伶俐碧萱完成签到 ,获得积分10
14秒前
14秒前
sunshine发布了新的文献求助10
15秒前
AAAsun完成签到,获得积分10
17秒前
18秒前
搜集达人应助bhkwxdxy采纳,获得200
21秒前
烟花应助我爱Chem采纳,获得10
22秒前
汉堡包应助天明采纳,获得10
23秒前
落后钢铁侠完成签到 ,获得积分10
24秒前
sunshine完成签到,获得积分10
24秒前
white完成签到 ,获得积分10
25秒前
一万次长芜回春的欢歌关注了科研通微信公众号
29秒前
29秒前
29秒前
浅鸢发布了新的文献求助10
30秒前
小马甲应助HJJHJH采纳,获得10
31秒前
31秒前
32秒前
忧心的惜天完成签到 ,获得积分10
35秒前
天明发布了新的文献求助10
35秒前
ddaa发布了新的文献求助10
37秒前
科研通AI5应助嗯嗯采纳,获得10
38秒前
osh111发布了新的文献求助10
38秒前
石绿海完成签到,获得积分10
39秒前
40秒前
不想太多完成签到,获得积分10
41秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800426
求助须知:如何正确求助?哪些是违规求助? 3345655
关于积分的说明 10326568
捐赠科研通 3062128
什么是DOI,文献DOI怎么找? 1680879
邀请新用户注册赠送积分活动 807263
科研通“疑难数据库(出版商)”最低求助积分说明 763572