亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep-Learning Approach to the Self-Piercing Riveting of Various Combinations of Steel and Aluminum Sheets

铆钉 材料科学 拉深 深度学习 接头(建筑物) 极限抗拉强度 计算机科学 模数 人工智能 机械工程 复合材料 结构工程 工程类
作者
Hyun Kyung Kim,Sehyeok Oh,Keong-Hwan Cho,Dong-Hyuck Kam,Hyungson Ki
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:9: 79316-79325 被引量:7
标识
DOI:10.1109/access.2021.3084296
摘要

Deep-learning architectures were employed to simulate the self-piercing riveting process of steel and aluminum sheets and predict the cross-sectional joint shape with a zero head height. Four steels (SPRC440, SPFC590DP, GI780DP, SGAFC980Y) and three aluminum alloys (Al5052, Al5754, Al5083) were considered as the materials for the top and bottom sheets, respectively. The key objective was to consider the material properties of these metal sheets (Young's modulus, Poisson's ratio, and ultimate tensile strength) in a deep-learning framework. Two deep-learning models were considered: In the first model, the properties of the top and bottom sheets were adopted as the scalar inputs, and in the second model, the three properties were graphically assigned to the three channels of the input image. Both the models generated a segmentation image of the cross-section. To assess the accuracy of the predictions, the generated images were compared with ground truth images, and three key geometrical factors (interlock, bottom thickness, and effective length) were measured. The first and second models achieved prediction accuracies of 91.95% and 92.22%, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助AliEmbark采纳,获得30
8秒前
顾矜应助wen采纳,获得10
13秒前
Jim完成签到,获得积分10
14秒前
18秒前
19秒前
28秒前
29秒前
34秒前
绣虎发布了新的文献求助30
41秒前
liuyingke完成签到,获得积分10
52秒前
绣虎完成签到,获得积分10
58秒前
郭嘉彬发布了新的文献求助10
1分钟前
1分钟前
彭于晏应助科研通管家采纳,获得10
1分钟前
Shawn_54给Shawn_54的求助进行了留言
1分钟前
1分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
Shawn_54发布了新的文献求助10
2分钟前
3分钟前
shhoing应助科研通管家采纳,获得10
3分钟前
今后应助科研通管家采纳,获得10
3分钟前
4分钟前
yys完成签到,获得积分10
4分钟前
FashionBoy应助Shawn_54采纳,获得10
4分钟前
4分钟前
guo发布了新的文献求助10
4分钟前
香蕉觅云应助guo采纳,获得30
5分钟前
5分钟前
ding应助Migue采纳,获得10
5分钟前
科研通AI6应助科研通管家采纳,获得10
5分钟前
5分钟前
5分钟前
6分钟前
6分钟前
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5538762
求助须知:如何正确求助?哪些是违规求助? 4625805
关于积分的说明 14596939
捐赠科研通 4566499
什么是DOI,文献DOI怎么找? 2503319
邀请新用户注册赠送积分活动 1481410
关于科研通互助平台的介绍 1452805