LLFE: A Novel Learning Local Features Extraction for UAV Navigation Based on Infrared Aerial Image and Satellite Reference Image Matching

人工智能 计算机科学 计算机视觉 航空影像 RGB颜色模型 特征(语言学) 特征提取 卷积神经网络 图像(数学) 模式识别(心理学) 哲学 语言学
作者
Xupei Zhang,Zhanzhuang He,Zhong Ma,Zhongxi Wang,Li Wang
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:13 (22): 4618-4618 被引量:9
标识
DOI:10.3390/rs13224618
摘要

Local features extraction is a crucial technology for image matching navigation of an unmanned aerial vehicle (UAV), where it aims to accurately and robustly match a real-time image and a geo-referenced image to obtain the position update information of the UAV. However, it is a challenging task due to the inconsistent image capture conditions, which will lead to extreme appearance changes, especially the different imaging principle between an infrared image and RGB image. In addition, the sparsity and labeling complexity of existing public datasets hinder the development of learning-based methods in this research area. This paper proposes a novel learning local features extraction method, which uses local features extracted by deep neural network to find the correspondence features on the satellite RGB reference image and real-time infrared image. First, we propose a single convolution neural network that simultaneously extracts dense local features and their corresponding descriptors. This network combines the advantages of a high repeatability local feature detector and high reliability local feature descriptors to match the reference image and real-time image with extreme appearance changes. Second, to make full use of the sparse dataset, an iterative training scheme is proposed to automatically generate the high-quality corresponding features for algorithm training. During the scheme, the dense correspondences are automatically extracted, and the geometric constraints are added to continuously improve the quality of them. With these improvements, the proposed method achieves state-of-the-art performance for infrared aerial (UAV captured) image and satellite reference image, which shows 4–6% performance improvements in precision, recall, and F1-score, compared to the other methods. Moreover, the applied experiment results show its potential and effectiveness on localization for UAVs navigation and trajectory reconstruction application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bblythe完成签到,获得积分10
2秒前
2秒前
3秒前
汪了个汪完成签到,获得积分20
6秒前
6秒前
林生完成签到 ,获得积分10
8秒前
听风发布了新的文献求助10
8秒前
酷酷的安柏完成签到 ,获得积分10
8秒前
深情安青应助自信猕猴桃采纳,获得10
9秒前
nimeng123完成签到,获得积分10
9秒前
和谐亦瑶完成签到,获得积分10
9秒前
momo完成签到,获得积分20
10秒前
11秒前
13秒前
nimeng123发布了新的文献求助10
13秒前
动漫大师发布了新的文献求助10
16秒前
雏菊完成签到,获得积分10
18秒前
最爱吃火锅完成签到,获得积分10
20秒前
飞飞鱼完成签到,获得积分10
20秒前
睽阔完成签到 ,获得积分10
21秒前
听风完成签到,获得积分10
24秒前
忆修完成签到,获得积分10
25秒前
29秒前
eurus驳回了bkagyin应助
29秒前
科研通AI2S应助bafanbqg采纳,获得10
30秒前
Sarrot完成签到,获得积分20
30秒前
cheese完成签到,获得积分10
31秒前
春日午后完成签到,获得积分10
31秒前
32秒前
风云完成签到,获得积分10
32秒前
凉菜完成签到,获得积分10
33秒前
行走的绅士完成签到,获得积分10
38秒前
冷酷的大山完成签到,获得积分10
39秒前
39秒前
Hello应助Sarrot采纳,获得10
40秒前
木头完成签到,获得积分10
41秒前
略略略完成签到 ,获得积分10
42秒前
小雅完成签到 ,获得积分10
43秒前
爆米花应助科研通管家采纳,获得10
46秒前
英俊的铭应助科研通管家采纳,获得10
46秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801436
求助须知:如何正确求助?哪些是违规求助? 3347178
关于积分的说明 10332279
捐赠科研通 3063465
什么是DOI,文献DOI怎么找? 1681729
邀请新用户注册赠送积分活动 807670
科研通“疑难数据库(出版商)”最低求助积分说明 763852