Bayesian semiparametric meta‐analytic‐predictive prior for historical control borrowing in clinical trials

计算机科学 贝叶斯概率 样本量测定 先验概率 参数统计 机器学习 计量经济学 数据挖掘 人工智能 统计 数学
作者
Bradley Hupf,Veronica Bunn,Jianchang Lin,Cheng Dong
出处
期刊:Statistics in Medicine [Wiley]
卷期号:40 (14): 3385-3399 被引量:21
标识
DOI:10.1002/sim.8970
摘要

When designing a clinical trial, borrowing historical control information can provide a more efficient approach by reducing the necessary control arm sample size while still yielding increased power. Several Bayesian methods for incorporating historical information via a prior distribution have been proposed, for example, (modified) power prior, (robust) meta-analytic predictive prior. When utilizing historical control borrowing, the prior parameter(s) must be specified to determine the magnitude of borrowing before the current data are observed. Thus, a flexible prior is needed in case of heterogeneity between historic trials or prior data conflict with the current trial. To incorporate the ability to selectively borrow historic information, we propose a Bayesian semiparametric meta-analytic-predictive prior. Using a Dirichlet process mixture prior allows for relaxation of parametric assumptions, and lets the model adaptively learn the relationship between the historic and current control data. Additionally, we generalize a method for estimating the prior effective sample size (ESS) for the proposed prior. This gives an intuitive quantification of the amount of information borrowed from historical trials, and aids in tuning the prior to the specific task at hand. We illustrate the effectiveness of the proposed methodology by comparing performance between existing methods in an extensive simulation study and a phase II proof-of-concept trial in ankylosing spondylitis. In summary, our proposed robustification of the meta-analytic-predictive prior alleviates the need for prespecifying the amount of borrowing, providing a more flexible and robust method to integrate historical data from multiple study sources in the design and analysis of clinical trials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hanlanx完成签到,获得积分10
刚刚
平淡的萤完成签到,获得积分10
1秒前
2秒前
My完成签到 ,获得积分10
2秒前
月光下的路灯完成签到,获得积分10
3秒前
Arthur完成签到,获得积分10
3秒前
调皮紫文发布了新的文献求助10
4秒前
姜春志发布了新的文献求助10
4秒前
简柠完成签到,获得积分10
4秒前
4秒前
一颗柠檬完成签到,获得积分10
4秒前
5秒前
5秒前
梓墨发布了新的文献求助10
6秒前
7秒前
heolmes完成签到,获得积分10
7秒前
老迟到的丹雪应助DDDD采纳,获得20
7秒前
7秒前
7秒前
8秒前
9秒前
xzr发布了新的文献求助10
9秒前
9秒前
Jane完成签到 ,获得积分10
11秒前
11秒前
12秒前
kuuga4256发布了新的文献求助10
12秒前
12秒前
温柔的墙发布了新的文献求助10
13秒前
cccxxx发布了新的文献求助10
14秒前
14秒前
共享精神应助QQ采纳,获得10
14秒前
思源应助琳666采纳,获得10
14秒前
无情晓绿完成签到,获得积分20
14秒前
平常馒头完成签到 ,获得积分10
15秒前
Serendipity应助聪明的书翠采纳,获得10
15秒前
1a完成签到 ,获得积分10
15秒前
Soleil发布了新的文献求助10
15秒前
yolo发布了新的文献求助10
16秒前
bin完成签到,获得积分10
16秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 820
Acylated delphinidin glucosides and flavonols from Clitoria ternatea 800
Logical form: From GB to Minimalism 500
Византийско-аланские отно- шения (VI–XII вв.) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4185899
求助须知:如何正确求助?哪些是违规求助? 3721791
关于积分的说明 11727856
捐赠科研通 3399899
什么是DOI,文献DOI怎么找? 1865588
邀请新用户注册赠送积分活动 922669
科研通“疑难数据库(出版商)”最低求助积分说明 834186