Multimodal Marketing Intent Analysis for Effective Targeted Advertising

病毒式营销 计算机科学 市场调研 数字营销 社会化媒体 数据科学 万维网 营销 业务
作者
Lu Zhang,Jialie Shen,Jian Zhang,Jingsong Xu,Zhibin Li,Yazhou Yao,Litao Yu
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:24: 1830-1843 被引量:30
标识
DOI:10.1109/tmm.2021.3073267
摘要

People’s daily information sharing and acquisition through the Internet has become more and more popular. The comprehensive multimodal marketing advertorial generated by ‘We Media’ accounts besides the normal social news is gaining its importance on social media platforms. In order to achieve effective advertising, the marketing intent understanding is a key step towards generating targeted advertising strategies (push advertorials to specific people at a specific time). However, advertorials in real are usually designed to pretend as normal social news with a wide range of contents. This poses big challenges to the platforms on accurately recognizing and analyzing the marketing intents behind the advertorials. As a pioneering study, we address this new problem of multimodal-based marketing intent analysis and answer three core questions: (1) does a piece of social news contain marketing intent? (2) what is the topic of marketing intent? (3) what is the extent of marketing intent? Towards this end, we propose a novel Multimodal-based Marketing Intent Analysis scheme (MMIA) to estimate the marketing intent embedded in the multimodal contents. Specifically, a novel supervised neural autoregressive model (SmiDocNADE) is proposed to enhance the discriminative capacity of the learned hidden features so that a single system is capable of solving the three questions. In order to effectively model inter-correlations between images and text in advertorials, we fuse multimodal data and extract features by Graph Convolution Networks as an enhancement to SmiDocNADE. The extensive evaluations demonstrate the advantages of our proposed system in multimodal-based marketing intent analysis from multiple aspects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
隐形曼青应助天涯赤子采纳,获得10
刚刚
刚刚
刚刚
1秒前
小蘑菇应助1997采纳,获得10
1秒前
1秒前
3秒前
3秒前
Jane发布了新的文献求助10
4秒前
4秒前
祥小哥发布了新的文献求助10
4秒前
ff完成签到,获得积分10
5秒前
ning发布了新的文献求助10
5秒前
5秒前
科研通AI5应助Qingcyx采纳,获得10
5秒前
6秒前
轻松煎饼完成签到,获得积分10
6秒前
7秒前
Jasper应助諵十一采纳,获得10
7秒前
7秒前
科研通AI6应助zhuzihao采纳,获得10
8秒前
酷酷银耳汤应助kyfw采纳,获得10
8秒前
8秒前
老哥8212完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
9秒前
9秒前
田様应助cola采纳,获得10
9秒前
9秒前
dy1994完成签到,获得积分10
9秒前
10秒前
10秒前
祥小哥完成签到,获得积分10
10秒前
斑比发布了新的文献求助10
11秒前
北彧发布了新的文献求助10
12秒前
传奇3应助呆萌采纳,获得10
13秒前
天涯赤子发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Instant Bonding Epoxy Technology 500
Methodology for the Human Sciences 500
DEALKOXYLATION OF β-CYANOPROPIONALDEYHDE DIMETHYL ACETAL 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Cement Chemistry Calcium silicates and anhydrous Portland cement 300
菊と刀 日本文化の型 230
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4369338
求助须知:如何正确求助?哪些是违规求助? 3867662
关于积分的说明 12058970
捐赠科研通 3510299
什么是DOI,文献DOI怎么找? 1926373
邀请新用户注册赠送积分活动 968321
科研通“疑难数据库(出版商)”最低求助积分说明 867415