Cylindrical Battery Fault Detection Under Extreme Fast Charging: A Physics-Based Learning Approach

故障检测与隔离 电池(电) 观察员(物理) 计算机科学 断层(地质) 控制工程 人工智能 工程类 功率(物理) 物理 量子力学 地质学 地震学 执行机构
作者
Roya Firoozi,Sara Sattarzadeh,Satadru Dey
出处
期刊:IEEE Transactions on Energy Conversion [Institute of Electrical and Electronics Engineers]
卷期号:37 (2): 1241-1250 被引量:28
标识
DOI:10.1109/tec.2021.3112950
摘要

High power operation in extreme fast charging significantly increases the risk of internal faults in Electric Vehicle batteries which can lead to accelerated battery failure. Early detection of these faults is crucial for battery safety and widespread deployment of fast charging. In this setting, we propose a real-time {detection} framework for battery voltage and thermal faults. A major challenge in battery fault detection arises from the effect of uncertainties originating from sensor inaccuracies, nominal aging, or unmodelled dynamics. Inspired by physics-based learning, we explore a detection paradigm that combines physics-based models, model-based detection observers, and data-driven learning techniques to address this challenge. Specifically, we construct the {detection} observers based on an experimentally identified electrochemical-thermal model, and subsequently design the observer tuning parameters following Lyapunov's stability theory. Furthermore, we utilize Gaussian Process Regression technique to learn the model and measurement uncertainties which in turn aid the {detection} observers in distinguishing faults and uncertainties. Such uncertainty learning essentially helps suppressing their effects, potentially enabling early detection of faults. We perform simulation and experimental case studies on the proposed fault {detection} scheme verifying the potential of physics-based learning in early detection of battery faults.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黄可以完成签到,获得积分10
1秒前
longggg发布了新的文献求助10
2秒前
2秒前
waiting完成签到 ,获得积分10
4秒前
5秒前
酷炫的尔丝完成签到 ,获得积分10
6秒前
李爱国应助科研通管家采纳,获得10
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
6秒前
彭于晏应助科研通管家采纳,获得10
6秒前
星辰大海应助科研通管家采纳,获得10
7秒前
我是老大应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
7秒前
温柔的天奇完成签到 ,获得积分10
7秒前
waiting关注了科研通微信公众号
8秒前
May发布了新的文献求助10
8秒前
春锅锅完成签到,获得积分10
10秒前
吴迪发布了新的文献求助10
10秒前
11秒前
Orange应助王金志采纳,获得10
11秒前
SEVEN发布了新的文献求助10
11秒前
wol007完成签到 ,获得积分10
13秒前
Cala洛~发布了新的文献求助10
17秒前
英俊的铭应助大力的含卉采纳,获得10
19秒前
wuyanchi完成签到,获得积分10
20秒前
22秒前
23秒前
xc完成签到,获得积分10
23秒前
Thee完成签到,获得积分10
25秒前
刻苦的秋柔完成签到,获得积分10
26秒前
彩虹完成签到 ,获得积分10
27秒前
SEVEN发布了新的文献求助10
29秒前
冰山一脚尖完成签到,获得积分10
32秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Simulation of High-NA EUV Lithography 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
The Rise & Fall of Classical Legal Thought 260
Tonal intuitions in "Tristan und Isolde" / by Brian Hyer 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4333820
求助须知:如何正确求助?哪些是违规求助? 3845353
关于积分的说明 12011300
捐赠科研通 3485906
什么是DOI,文献DOI怎么找? 1913458
邀请新用户注册赠送积分活动 956641
科研通“疑难数据库(出版商)”最低求助积分说明 857306