Accuracy of automatic abnormal potential annotation for substrate identification in scar-related ventricular tachycardia

注释 室性心动过速 心室 计算机科学 窦性心律 人工智能 医学 模式识别(心理学) 内科学 心房颤动
作者
Yosuke Nakatani,Philippe Maury,Anne Rollin,F. Daniel Ramirez,Cyril Goujeau,Takashi Nakashima,Clémentine Andre,Aline Carapezzi,Philipp Krisai,Takamitsu Takagi,Tsukasa Kamakura,Konstantinos Vlachos,Ghassen Cheniti,Romain Tixier,Quentin Voglimacci‐Stefanopoli,Nicolas Welté,Rémi Chauvel,Josselin Duchâteau,Thomas Pambrun,Nicolas Derval
出处
期刊:Authorea - Authorea 被引量:1
标识
DOI:10.22541/au.161440437.71296952/v1
摘要

Introduction: Ultra-high-density mapping for ventricular tachycardia (VT) is increasingly used. However, manual annotation of local abnormal ventricular activities (LAVAs) is challenging in this setting. Therefore, we assessed the accuracy of the automatic annotation of LAVAs with the Lumipoint algorithm of the Rhythmia system (Boston Scientific). Methods and Results: One hundred consecutive patients undergoing catheter ablation of scar-related VT were studied. Areas with LAVAs and ablation sites were manually annotated during the procedure and compared with automatically annotated areas using the Lumipoint features for detecting late potentials (LP), fragmented potentials (FP), and double potentials (DP). The accuracy of each automatic annotation feature was assessed by re-evaluating local potentials within automatically annotated areas. Automatically annotated areas matched with manually annotated areas in 64 cases (64%), identified an area with LAVAs missed during manual annotation in 15 cases (15%), and did not highlight areas identified with manual annotation in 18 cases (18%). Automatic FP annotation accurately detected LAVAs regardless of the cardiac rhythm or scar location; automatic LP annotation accurately detected LAVAs in sinus rhythm, but was affected by the scar location during ventricular pacing; automatic DP annotation was not affected by the mapping rhythm, but its accuracy was suboptimal when the scar was located on the right ventricle or epicardium. Conclusion: The Lumipoint algorithm was as/more accurate than manual annotation in 79% of patients. FP annotation detected LAVAs most accurately regardless of mapping rhythm and scar location. The accuracy of LP and DP annotations varied depending on mapping rhythm or scar location.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
子平完成签到 ,获得积分0
刚刚
Csy完成签到,获得积分10
刚刚
闵凝竹完成签到 ,获得积分0
6秒前
siri完成签到,获得积分10
6秒前
6秒前
Wei完成签到 ,获得积分10
7秒前
一枝完成签到 ,获得积分10
9秒前
9秒前
可爱的函函应助wenxiang采纳,获得10
9秒前
归尘发布了新的文献求助50
12秒前
pluto应助写意采纳,获得20
12秒前
草莓味的榴莲完成签到,获得积分10
14秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
pluto应助科研通管家采纳,获得50
15秒前
15秒前
JJ完成签到,获得积分10
15秒前
17秒前
十一完成签到,获得积分10
19秒前
22秒前
科研通AI5应助cy采纳,获得30
22秒前
高兴天空发布了新的文献求助10
24秒前
史迪奇完成签到,获得积分10
24秒前
五岳三鸟完成签到,获得积分10
27秒前
云海绵绵完成签到,获得积分10
32秒前
龙行天下完成签到,获得积分10
32秒前
xliiii完成签到,获得积分10
36秒前
陌上尘开完成签到 ,获得积分10
37秒前
龙行天下发布了新的文献求助10
37秒前
三水完成签到,获得积分10
38秒前
Orange应助张达采纳,获得10
38秒前
王之争霸完成签到,获得积分10
42秒前
46秒前
科研通AI5应助nakl采纳,获得10
48秒前
大气傲易完成签到 ,获得积分10
51秒前
马德里就思议完成签到,获得积分10
51秒前
Sir_M发布了新的文献求助10
53秒前
叶泽完成签到,获得积分10
54秒前
54秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781287
求助须知:如何正确求助?哪些是违规求助? 3326814
关于积分的说明 10228352
捐赠科研通 3041803
什么是DOI,文献DOI怎么找? 1669591
邀请新用户注册赠送积分活动 799153
科研通“疑难数据库(出版商)”最低求助积分说明 758751