突变
活动站点
配体(生物化学)
分子力学
合理设计
基质(水族馆)
酶
化学
分子动力学
蛋白质工程
结合位点
组合化学
生物物理学
生物化学
立体化学
计算化学
纳米技术
生物
突变
材料科学
受体
基因
生态学
作者
Sandra Acebes,Elena Fernández‐Fueyo,Emanuele Monza,Maria Fátima Lucas,David Almendral,Francisco J. Ruiz‐Dueñas,Henrik Lund,Ángel T. Martı́nez,Vı́ctor Guallar
出处
期刊:ACS Catalysis
[American Chemical Society]
日期:2016-02-03
卷期号:6 (3): 1624-1629
被引量:54
标识
DOI:10.1021/acscatal.6b00028
摘要
Due to its importance in the pharmaceutical industry, ligand dynamic simulations have experienced a great expansion. Using all-atom models and cutting edge hardware, one can perform non-biased ligand migration, active site search and binding studies. In this letter we demonstrate (and validate by PCR mutagenesis) how these techniques, when combined with quantum mechanics, open new possibilities in enzyme engineering. We provide a complete analysis where: 1) biophysical simulations produce ligand diffusion and, 2) biochemical modeling samples the chemical event. Using such broad analysis we engineer a highly stable peroxidase activating the enzyme for new substrate oxidation after rational mutation of two non-conserved surface residues. In particular, we create a new surface-binding site, quantitatively predicting the in vitro change in oxidation rate obtained by mutagenic PCR and achieving a comparable specificity constant to active peroxidases.
科研通智能强力驱动
Strongly Powered by AbleSci AI