Privacy Risk in Machine Learning: Analyzing the Connection to Overfitting

过度拟合 推论 机器学习 计算机科学 人工智能 人工神经网络
作者
Samuel Yeom,Irene Giacomelli,Matt Fredrikson,Somesh Jha
标识
DOI:10.1109/csf.2018.00027
摘要

Machine learning algorithms, when applied to sensitive data, pose a distinct threat to privacy. A growing body of prior work demonstrates that models produced by these algorithms may leak specific private information in the training data to an attacker, either through the models' structure or their observable behavior. However, the underlying cause of this privacy risk is not well understood beyond a handful of anecdotal accounts that suggest overfitting and influence might play a role. This paper examines the effect that overfitting and influence have on the ability of an attacker to learn information about the training data from machine learning models, either through training set membership inference or attribute inference attacks. Using both formal and empirical analyses, we illustrate a clear relationship between these factors and the privacy risk that arises in several popular machine learning algorithms. We find that overfitting is sufficient to allow an attacker to perform membership inference and, when the target attribute meets certain conditions about its influence, attribute inference attacks. Interestingly, our formal analysis also shows that overfitting is not necessary for these attacks and begins to shed light on what other factors may be in play. Finally, we explore the connection between membership inference and attribute inference, showing that there are deep connections between the two that lead to effective new attacks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
关松泉发布了新的文献求助10
1秒前
小古发布了新的文献求助10
1秒前
黄胖胖完成签到 ,获得积分10
1秒前
2秒前
完美世界应助degster采纳,获得10
2秒前
2秒前
一一完成签到,获得积分10
3秒前
豆沙小粽子完成签到,获得积分10
4秒前
4秒前
fjmelite完成签到 ,获得积分10
4秒前
5秒前
光热效应完成签到,获得积分10
5秒前
6秒前
7秒前
7秒前
8秒前
李冰洋发布了新的文献求助10
8秒前
特安坦发布了新的文献求助10
8秒前
8秒前
hopen完成签到,获得积分10
9秒前
Licifer发布了新的文献求助10
9秒前
一一发布了新的文献求助10
10秒前
飞龙爵士发布了新的文献求助10
10秒前
李健应助边走边听采纳,获得10
10秒前
12秒前
12秒前
13秒前
degster发布了新的文献求助10
13秒前
14秒前
15秒前
bkagyin应助456547采纳,获得10
16秒前
17秒前
18秒前
小纯牛奶完成签到,获得积分10
18秒前
岩下松风完成签到,获得积分10
18秒前
啊七发布了新的文献求助10
18秒前
WW发布了新的文献求助10
19秒前
19秒前
汉堡包应助WGQ采纳,获得10
19秒前
Orange应助UD采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Routledge Handbook on Spaces of Mental Health and Wellbeing 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5320658
求助须知:如何正确求助?哪些是违规求助? 4462494
关于积分的说明 13886925
捐赠科研通 4353430
什么是DOI,文献DOI怎么找? 2391188
邀请新用户注册赠送积分活动 1384830
关于科研通互助平台的介绍 1354619