协方差交集
协方差
卡尔曼滤波器
协方差矩阵的估计
集合卡尔曼滤波器
不变扩展卡尔曼滤波器
协方差矩阵
算法
控制理论(社会学)
快速卡尔曼滤波
扩展卡尔曼滤波器
计算机科学
稳健性(进化)
噪音(视频)
数学
Wishart分布
噪声测量
高斯噪声
人工智能
统计
降噪
多元统计
控制(管理)
化学
图像(数学)
基因
生物化学
作者
Yulong Huang,Yonggang Zhang,Zhemin Wu,Ning Li,Jonathon A. Chambers
标识
DOI:10.1109/tac.2017.2730480
摘要
In this paper, a novel variational Bayesian (VB)-based adaptive Kalman filter (VBAKF) for linear Gaussian state-space models with inaccurate process and measurement noise covariance matrices is proposed. By choosing inverse Wishart priors, the state together with the predicted error and measurement noise covariance matrices are inferred based on the VB approach. Simulation results for a target tracking example illustrate that the proposed VBAKF has better robustness to resist the uncertainties of process and measurement noise covariance matrices than existing state-of-the-art filters.
科研通智能强力驱动
Strongly Powered by AbleSci AI