卡尔曼滤波器
算法
惯性导航系统
计算机科学
高斯分布
协方差
导航系统
奇异值分解
扩展卡尔曼滤波器
控制理论(社会学)
非线性系统
卫星系统
北斗卫星导航系统
数学
全球导航卫星系统应用
全球定位系统
人工智能
统计
电信
物理
几何学
控制(管理)
量子力学
方向(向量空间)
作者
Qing Dai,Lifen Sui,Lingxuan Wang,Tian Zeng,Yuan Tian
标识
DOI:10.1016/j.geog.2017.12.001
摘要
To further improve the performance of UKF (Unscented Kalman Filter) algorithm used in BDS/SINS (BeiDou Navigation Satellite System/Strap down Inertial Navigation System), an improved GM-UKF (Gaussian Mixture Unscented Kalman Filter) considering non-Gaussian distribution is discussed in this paper. This new algorithm using SVD (Singular Value Decomposition) is proposed to alternative covariance square root calculation in UKF sigma point production. And to end the rapidly increasing number of Gaussian distributions, PDF (Probability Density Function) re-approximation is conducted. In principle this efficiency algorithm proposed here can achieve higher computational speed compared with traditional GM-UKF. And simulation experiment result show that, compared with UKF and GM-UKF algorithm, new algorithm implemented in BDS/SINS tightly integrated navigation system is suitable for handling nonlinear/non-Gaussian integrated navigation position calculation, for its lower computational complexity with high accuracy.
科研通智能强力驱动
Strongly Powered by AbleSci AI