Overview of deep learning in medical imaging

深度学习 人工智能 卷积神经网络 计算机科学 机器学习 医学影像学 领域(数学) 特征(语言学) 特征提取 分割 人工神经网络 模式识别(心理学) 数学 语言学 哲学 纯数学
作者
Kenji Suzuki
出处
期刊:Radiological Physics and Technology [Springer Science+Business Media]
卷期号:10 (3): 257-273 被引量:843
标识
DOI:10.1007/s12194-017-0406-5
摘要

The use of machine learning (ML) has been increasing rapidly in the medical imaging field, including computer-aided diagnosis (CAD), radiomics, and medical image analysis. Recently, an ML area called deep learning emerged in the computer vision field and became very popular in many fields. It started from an event in late 2012, when a deep-learning approach based on a convolutional neural network (CNN) won an overwhelming victory in the best-known worldwide computer vision competition, ImageNet Classification. Since then, researchers in virtually all fields, including medical imaging, have started actively participating in the explosively growing field of deep learning. In this paper, the area of deep learning in medical imaging is overviewed, including (1) what was changed in machine learning before and after the introduction of deep learning, (2) what is the source of the power of deep learning, (3) two major deep-learning models: a massive-training artificial neural network (MTANN) and a convolutional neural network (CNN), (4) similarities and differences between the two models, and (5) their applications to medical imaging. This review shows that ML with feature input (or feature-based ML) was dominant before the introduction of deep learning, and that the major and essential difference between ML before and after deep learning is the learning of image data directly without object segmentation or feature extraction; thus, it is the source of the power of deep learning, although the depth of the model is an important attribute. The class of ML with image input (or image-based ML) including deep learning has a long history, but recently gained popularity due to the use of the new terminology, deep learning. There are two major models in this class of ML in medical imaging, MTANN and CNN, which have similarities as well as several differences. In our experience, MTANNs were substantially more efficient in their development, had a higher performance, and required a lesser number of training cases than did CNNs. "Deep learning", or ML with image input, in medical imaging is an explosively growing, promising field. It is expected that ML with image input will be the mainstream area in the field of medical imaging in the next few decades.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助GongSyi采纳,获得10
1秒前
阿盛完成签到,获得积分10
2秒前
2秒前
Yi羿完成签到 ,获得积分10
3秒前
5秒前
Sunrise完成签到,获得积分10
5秒前
sensen发布了新的文献求助10
5秒前
柯一一应助LucyMartinez采纳,获得10
5秒前
小毛完成签到 ,获得积分10
6秒前
9秒前
9秒前
深情安青应助wei采纳,获得20
10秒前
树袋发布了新的文献求助10
10秒前
Que完成签到,获得积分10
11秒前
11秒前
祺屿梦完成签到,获得积分10
13秒前
momo发布了新的文献求助10
14秒前
柯一一应助百香果采纳,获得10
15秒前
16秒前
GongSyi发布了新的文献求助10
16秒前
天天快乐应助夏天的倒影采纳,获得10
17秒前
18秒前
留胡子的藏鸟完成签到,获得积分10
19秒前
sleeeeeep发布了新的文献求助20
20秒前
22秒前
23秒前
LC发布了新的文献求助10
25秒前
26秒前
桐桐应助lwl采纳,获得10
26秒前
coolkid应助sensen采纳,获得20
27秒前
大恒完成签到,获得积分10
27秒前
111应助azure采纳,获得10
30秒前
FashionBoy应助机灵的十八采纳,获得10
30秒前
LIU发布了新的文献求助10
31秒前
坦率的心锁完成签到,获得积分20
31秒前
33秒前
kls发布了新的文献求助10
33秒前
sunphor完成签到 ,获得积分10
35秒前
鱿鱼发布了新的文献求助10
36秒前
37秒前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Fire Protection Handbook, 21st Edition volume1和volume2 360
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3902553
求助须知:如何正确求助?哪些是违规求助? 3447341
关于积分的说明 10848471
捐赠科研通 3172587
什么是DOI,文献DOI怎么找? 1753017
邀请新用户注册赠送积分活动 847496
科研通“疑难数据库(出版商)”最低求助积分说明 790006