亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Overview of deep learning in medical imaging

深度学习 人工智能 卷积神经网络 计算机科学 机器学习 医学影像学 领域(数学) 特征(语言学) 特征提取 分割 人工神经网络 模式识别(心理学) 数学 语言学 哲学 纯数学
作者
Kenji Suzuki
出处
期刊:Radiological Physics and Technology [Springer Science+Business Media]
卷期号:10 (3): 257-273 被引量:843
标识
DOI:10.1007/s12194-017-0406-5
摘要

The use of machine learning (ML) has been increasing rapidly in the medical imaging field, including computer-aided diagnosis (CAD), radiomics, and medical image analysis. Recently, an ML area called deep learning emerged in the computer vision field and became very popular in many fields. It started from an event in late 2012, when a deep-learning approach based on a convolutional neural network (CNN) won an overwhelming victory in the best-known worldwide computer vision competition, ImageNet Classification. Since then, researchers in virtually all fields, including medical imaging, have started actively participating in the explosively growing field of deep learning. In this paper, the area of deep learning in medical imaging is overviewed, including (1) what was changed in machine learning before and after the introduction of deep learning, (2) what is the source of the power of deep learning, (3) two major deep-learning models: a massive-training artificial neural network (MTANN) and a convolutional neural network (CNN), (4) similarities and differences between the two models, and (5) their applications to medical imaging. This review shows that ML with feature input (or feature-based ML) was dominant before the introduction of deep learning, and that the major and essential difference between ML before and after deep learning is the learning of image data directly without object segmentation or feature extraction; thus, it is the source of the power of deep learning, although the depth of the model is an important attribute. The class of ML with image input (or image-based ML) including deep learning has a long history, but recently gained popularity due to the use of the new terminology, deep learning. There are two major models in this class of ML in medical imaging, MTANN and CNN, which have similarities as well as several differences. In our experience, MTANNs were substantially more efficient in their development, had a higher performance, and required a lesser number of training cases than did CNNs. "Deep learning", or ML with image input, in medical imaging is an explosively growing, promising field. It is expected that ML with image input will be the mainstream area in the field of medical imaging in the next few decades.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷冷完成签到 ,获得积分10
29秒前
科研通AI2S应助科研通管家采纳,获得10
41秒前
科研通AI5应助科研通管家采纳,获得10
41秒前
大模型应助科研通管家采纳,获得10
41秒前
儒雅HR完成签到,获得积分10
56秒前
1分钟前
hao完成签到 ,获得积分10
1分钟前
1分钟前
SS发布了新的文献求助10
1分钟前
科研通AI5应助Bo采纳,获得10
1分钟前
1分钟前
Bo发布了新的文献求助10
1分钟前
xingxing完成签到 ,获得积分10
2分钟前
Bo完成签到,获得积分10
2分钟前
王志鹏完成签到 ,获得积分10
2分钟前
慕青应助科研通管家采纳,获得10
2分钟前
叁叁完成签到 ,获得积分10
3分钟前
星辰大海应助妩媚的夏烟采纳,获得10
3分钟前
3分钟前
3分钟前
我是老大应助冷静新烟采纳,获得10
3分钟前
科研通AI5应助单纯的文龙采纳,获得30
3分钟前
3分钟前
3分钟前
科研通AI5应助科研通管家采纳,获得50
4分钟前
4分钟前
4分钟前
SS完成签到,获得积分10
5分钟前
5分钟前
5分钟前
酷酷的人生完成签到,获得积分10
5分钟前
jueshadi完成签到 ,获得积分10
5分钟前
欧阳蛋蛋鸡完成签到 ,获得积分10
6分钟前
6分钟前
冷静新烟发布了新的文献求助10
6分钟前
英姑应助科研通管家采纳,获得10
6分钟前
科目三应助科研通管家采纳,获得10
6分钟前
黄院士完成签到 ,获得积分10
7分钟前
YifanWang应助Wei采纳,获得10
7分钟前
marska完成签到,获得积分10
9分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 1000
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3775943
求助须知:如何正确求助?哪些是违规求助? 3321530
关于积分的说明 10206051
捐赠科研通 3036592
什么是DOI,文献DOI怎么找? 1666365
邀请新用户注册赠送积分活动 797395
科研通“疑难数据库(出版商)”最低求助积分说明 757805