Teasing apart the anticipatory and consummatory processing of monetary incentives: An event‐related potential study of reward dynamics

心理学 或有负变差 显著性(神经科学) 事件相关电位 认知心理学 激励显著性 预测(人工智能) 脑电图 任务(项目管理) 神经科学 上瘾 人工智能 计算机科学 经济 管理
作者
Keisha Novak,Dan Foti
出处
期刊:Psychophysiology [Wiley]
卷期号:52 (11): 1470-1482 被引量:170
标识
DOI:10.1111/psyp.12504
摘要

The monetary incentive delay (MID) task has been widely used in fMRI studies to investigate the neural networks involved in anticipatory and consummatory reward processing. Previous efforts to adapt the MID task for use with ERPs, however, have had limited success. Here, we sought to further decompose reward dynamics using a comprehensive set of anticipatory (cue-N2, cue-P3, contingent negative variation [CNV]) and consummatory ERPs (feedback negativity [FN], feedback P3 [fb-P3]). ERP data was recorded during adapted versions of the MID task across two experiments. Unlike previous studies, monetary incentive cues modulated the cue-N2, cue-P3, and CNV; however, cue-related ERPs and the CNV were uncorrelated with one another, indicating distinct anticipatory subprocesses. With regard to consummatory processing, FN amplitude primarily tracked outcome valence (reward vs. nonreward), whereas fb-P3 amplitude primarily tracked outcome salience (uncertain vs. certain). Independent modulation of the cue-P3 and fb-P3 was observed, indicating that these two P3 responses may uniquely capture the allocation of attention during anticipatory and consummatory reward processing, respectively. Overall, across two samples, consistent evidence of both anticipatory and consummatory ERP activity was observed on an adapted version of the MID paradigm, demonstrating for the first time how these ERP components may be integrated with one another to more fully characterize the time course of reward processing. This ERP-MID paradigm is well suited to parsing reward dynamics, and can be applied to both healthy and clinical populations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助潇笑采纳,获得30
刚刚
刚刚
传奇3应助都美秋采纳,获得10
1秒前
zqs发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
123发布了新的文献求助10
3秒前
3秒前
4秒前
Zhuzhu完成签到 ,获得积分10
4秒前
吴兰田完成签到,获得积分10
5秒前
汉堡包应助天下无敌采纳,获得20
5秒前
liumiaomiao发布了新的文献求助10
5秒前
plant完成签到,获得积分0
5秒前
5秒前
6秒前
cyzk发布了新的文献求助10
7秒前
追寻的羽毛完成签到,获得积分10
8秒前
脑洞疼应助小任采纳,获得10
9秒前
彭于晏应助庄冬丽采纳,获得10
9秒前
刘双发布了新的文献求助10
9秒前
大个应助我乐个奇采纳,获得10
10秒前
量子星尘发布了新的文献求助10
10秒前
研two完成签到,获得积分10
11秒前
轨迹应助sxf采纳,获得30
11秒前
随机的鱼完成签到,获得积分10
12秒前
PU聚氨酯完成签到,获得积分10
12秒前
都美秋发布了新的文献求助10
12秒前
13秒前
15秒前
ADDDGDD发布了新的文献求助10
15秒前
15秒前
16秒前
18秒前
18秒前
18秒前
Rain完成签到,获得积分10
19秒前
123完成签到,获得积分20
19秒前
小任完成签到,获得积分10
20秒前
顾矜应助zqs采纳,获得10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5737956
求助须知:如何正确求助?哪些是违规求助? 5374957
关于积分的说明 15336581
捐赠科研通 4881157
什么是DOI,文献DOI怎么找? 2623366
邀请新用户注册赠送积分活动 1572101
关于科研通互助平台的介绍 1528930