吉非替尼
蛋白激酶B
PI3K/AKT/mTOR通路
癌症研究
异位表达
生物
基因敲除
信号转导
下调和上调
细胞生物学
细胞培养
化学
表皮生长因子受体
癌症
遗传学
基因
作者
Jie Yang,Gang Qin,Moulun Luo,Jiangyuan Chen,Q Zhang,L Li,Ling Pan,Shanyu Qin
标识
DOI:10.1038/cddis.2015.197
摘要
Abstract Gefitinib efficiency in non-small-cell lung cancer (NSCLC) therapy is limited due to development of drug resistance. The molecular mechanisms of gefitinib resistance remain still unclear. In this study, we first found that connexin 26 (Cx26) is the predominant Cx isoform expressed in various NSCLC cell lines. Then, two gefitinib-resistant (GR) NSCLC cell lines, HCC827 GR and PC9 GR, from their parental cells were established. In these GR cells, the results showed that gefitinib resistance correlated with changes in cellular EMT phenotypes and upregulation of Cx26. Cx26 was detected to be accumulated in the cytoplasm and failed to establish functional gap-junctional intercellular communication (GJIC) either in GR cells or their parental cells. Ectopic expression of GJIC-deficient chimeric Cx26 was sufficient to induce EMT and gefitinib insensitivity in HCC827 and PC9 cells, while knockdown of Cx26 reversed EMT and gefitinib resistance in their GR cells both in vitro and in vivo . Furthermore, Cx26 overexpression could activate PI3K/Akt signaling in these cells. Cx26-mediated EMT and gefitinib resistance were significantly blocked by inhibition of PI3K/Akt pathway. Specifically, inhibition of the constitutive activation of PI3K/Akt pathway substantially suppressed Cx26 expression, and Cx26 was confirmed to functionally interplay with PI3K/Akt signaling to promote EMT and gefitinib resistance in NSCLC cells. In conclusion, the reciprocal positive regulation between Cx26 and PI3K/Akt signaling contributes to acquired gefitinib resistance in NSCLC cells by promoting EMT via a GJIC-independent manner.
科研通智能强力驱动
Strongly Powered by AbleSci AI