电致发光
钙钛矿(结构)
卤化物
重组
载流子
量子效率
无辐射复合
化学物理
量子阱
材料科学
自发辐射
光电子学
化学
物理
半导体
纳米技术
图层(电子)
无机化学
光学
结晶学
基因
生物化学
激光器
半导体材料
作者
Guichuan Xing,Bo Wu,Xiangyang Wu,Mingjie Li,Bin Du,Qi Wei,Jia Guo,Edwin K. L. Yeow,Tze Chien Sum,Wei Huang
摘要
Abstract The slow bimolecular recombination that drives three-dimensional lead-halide perovskites’ outstanding photovoltaic performance is conversely a fundamental limitation for electroluminescence. Under electroluminescence working conditions with typical charge densities lower than 10 15 cm −3 , defect-states trapping in three-dimensional perovskites competes effectively with the bimolecular radiative recombination. Herein, we overcome this limitation using van-der-Waals-coupled Ruddlesden-Popper perovskite multi-quantum-wells. Injected charge carriers are rapidly localized from adjacent thin few layer ( n ≤4) multi-quantum-wells to the thick ( n ≥5) multi-quantum-wells with extremely high efficiency (over 85%) through quantum coupling. Light emission originates from excitonic recombination in the thick multi-quantum-wells at much higher decay rate and efficiency than bimolecular recombination in three-dimensional perovskites. These multi-quantum-wells retain the simple solution processability and high charge carrier mobility of two-dimensional lead-halide perovskites. Importantly, these Ruddlesden-Popper perovskites offer new functionalities unavailable in single phase constituents, permitting the transcendence of the slow bimolecular recombination bottleneck in lead-halide perovskites for efficient electroluminescence.
科研通智能强力驱动
Strongly Powered by AbleSci AI