溶酶体
同型半胱氨酸
自噬
细胞生物学
胱硫醚β合酶
溶酶体贮存病
功能(生物学)
甘露糖6-磷酸受体
同型半胱氨酸尿
代谢物
生物
分解代谢
细胞器
新陈代谢
化学
内科学
内分泌学
生物化学
高同型半胱氨酸血症
胱硫醚γ裂解酶
平衡
代谢途径
信号转导
突变
组织蛋白酶
体外
作者
Yang Yang,Qianjin Kong,Chaolian Liu,Fengyang Wang,Meijiao Li,Shalan Li,Yuehui Shi,Leonard Krall,Xin Wang,Shan He,Kai Jiang,Xuna Wu,Mei Yang,Chonglin Yang
标识
DOI:10.1083/jcb.202503081
摘要
Lysosomes are degradation and signaling organelles central to metabolic homeostasis. It remains unclear whether and how harmful metabolites compromise lysosome function in the etiopathology of metabolic disorders. Combining Caenorhabditiselegans and mouse models, we demonstrate that homocysteine, an intermediate in methionine-cysteine metabolism and the cause of the life-threatening disease homocystinuria, disrupts lysosomal functions. In C. elegans, mutations in cystathionine β-synthase cause strong buildup of homocysteine and developmental arrest. We reveal that homocysteine binds to and homocysteinylates V-ATPase, causing its inhibition and consequently impairment of lysosomal degradative capacity. This leads to enormous enlargement of lysosomes with extensive cargo accumulation and lysosomal membrane damage in severe cases. Cbs-deficient mice similarly accumulate homocysteine, displaying abnormal or damaged lysosomes reminiscent of lysosomal storage diseases in multiple tissues. These findings not only uncover how a metabolite can damage lysosomes but also establish lysosomal impairment as a critical contributing factor to homocystinuria and homocysteine-related diseases.
科研通智能强力驱动
Strongly Powered by AbleSci AI