Constructing Bipolar Dual‐Active Sites through High‐Entropy‐Induced Electric Dipole Transition for Decoupling Oxygen Redox

解耦(概率) 偶极子 材料科学 氧化还原 氧气 对偶(语法数字) 化学物理 凝聚态物理 物理 量子力学 文学类 工程类 控制工程 艺术 冶金
作者
Q. Zhang,Zhiyang Zheng,Runhua Gao,Xiao Xiao,Miaolun Jiao,Boran Wang,Guangmin Zhou,Hui‐Ming Cheng
出处
期刊:Advanced Materials [Wiley]
卷期号:36 (26) 被引量:32
标识
DOI:10.1002/adma.202401018
摘要

Abstract It remains a significant challenge to construct active sites to break the trade‐off between oxidation and reduction processes occurring in battery cathodes with conversion mechanism, especially for the oxygen reduction and evolution reactions (ORR/OER) involved in the zinc‐air batteries (ZABs). Here, using a high‐entropy‐driven electric dipole transition strategy to activate and stabilize the tetrahedral sites is proposed, while enhancing the activity of octahedral sites through orbital hybridization in a FeCoNiMnCrO spinel oxide, thus constructing bipolar dual‐active sites with high‐low valence states, which can effectively decouple ORR/OER. The FeCoNiMnCrO high‐entropy spinel oxide with severe lattice distortion, exhibits a strong 1s→4s electric dipole transition and intense t 2g (Co)/e g (Ni)‐2p(O L ) orbital hybridization that regulates the electronic descriptors, e g and t 2g , which leads to the formation of low‐valence Co tetrahedral sites (Co th ) and high‐valence Ni octahedral sites (Ni oh ), resulting in a higher half‐wave potential of 0.87 V on Co th sites and a lower overpotential of 0.26 V at 10 mA cm −2 on Ni oh sites as well as a superior performance of ZABs compared to low/mild entropy spinel oxides. Therefore, entropy engineering presents a distinctive approach for designing catalytic sites by inducing novel electromagnetic properties in materials across various electrocatalytic reactions, particularly for decoupling systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yuqiu完成签到,获得积分10
刚刚
123发布了新的文献求助10
4秒前
却岑发布了新的文献求助10
4秒前
7秒前
10秒前
小蘑菇应助李Xinyao_29采纳,获得10
12秒前
微笑的语芙完成签到 ,获得积分10
12秒前
万能的小叮当完成签到,获得积分0
12秒前
热心晓丝发布了新的文献求助10
13秒前
思源应助ningqing采纳,获得10
14秒前
不想干活应助科研通管家采纳,获得10
15秒前
ding应助科研通管家采纳,获得10
15秒前
Hello应助科研通管家采纳,获得10
15秒前
大个应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
乐乐应助科研通管家采纳,获得10
15秒前
酷波er应助科研通管家采纳,获得10
15秒前
不想干活应助科研通管家采纳,获得10
15秒前
不想干活应助科研通管家采纳,获得10
15秒前
不想干活应助科研通管家采纳,获得10
16秒前
不想干活应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
16秒前
孤独秋翠完成签到,获得积分10
16秒前
机灵柚子应助ZHH采纳,获得10
17秒前
17秒前
17秒前
18秒前
Owen应助N型半导体采纳,获得10
19秒前
20秒前
2758543477发布了新的文献求助10
20秒前
22秒前
甜蜜的白桃完成签到 ,获得积分10
22秒前
瓜子发布了新的文献求助10
23秒前
25秒前
隐形曼青应助泌外科研采纳,获得30
27秒前
27秒前
27秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 800
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
探索化学的奥秘:电子结构方法 400
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III – Liver, Biliary Tract, and Pancreas, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4171715
求助须知:如何正确求助?哪些是违规求助? 3707247
关于积分的说明 11696438
捐赠科研通 3392555
什么是DOI,文献DOI怎么找? 1860930
邀请新用户注册赠送积分活动 920610
科研通“疑难数据库(出版商)”最低求助积分说明 832768