高温合金
材料科学
机械加工
磨料
激光打孔
冶金
钻探
流量(数学)
激光器
复合材料
光学
合金
机械
物理
作者
Zhanfei Zhang,Zhong Mao,Wenhu Wang,Huimin Xie,Ruisong Jiang,Yifeng Xiong,Xiaobing Zhang
标识
DOI:10.1016/j.jmatprotec.2024.118411
摘要
A novel hole-making technique, which combines ultrashort pulse (UP) laser drilling with abrasive flow machining (AFM), has been developed to enhance the surface quality and fatigue resistance of diffusive holes in nickel-based single crystal (NBSC) superalloys. This study conducted a comprehensive analysis of the surface morphology and metallurgical characteristics of the hole wall, evaluated by fatigue testing at elevated temperatures and fractography analysis. The findings demonstrate that AFM can effectively eliminate the solidified debris generated during UP laser drilling, significantly reducing surface roughness and inducing a rounded effect at the outlet acute zone of the diffusive hole. Such improvements have been shown to increase the fatigue life of the holes by up to 50.6% compared to those without polish. Furthermore, the crystal plasticity finite element method (CPFEM) was employed to investigate the localized stress concentration and the accumulation of plastic slip around the diffusive hole, elucidating the mechanisms behind fatigue failure in NBSC superalloys. The study also discusses the influence of the different hole-making technology on the fatigue properties of diffusive holes, integrating CPFEM results with analyses of surface quality and fatigue fractography.
科研通智能强力驱动
Strongly Powered by AbleSci AI