亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MF-Net: Multiple-feature extraction network for breast lesion segmentation in ultrasound images

计算机科学 分割 人工智能 特征提取 乳腺超声检查 模式识别(心理学) 特征(语言学) 计算机视觉 图像分割 超声波 放射科 乳腺癌 医学 乳腺摄影术 内科学 语言学 哲学 癌症
作者
Jiajia Wang,Guoqi Liu,Dong Liu,Baofang Chang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:249: 123798-123798 被引量:15
标识
DOI:10.1016/j.eswa.2024.123798
摘要

Breast lesion segmentation in ultrasound images is of great significance for qualitative breast lesions. However, blurred lesion boundaries, irregular lesion shapes, and similar intensity distributions between lesion and background bring challenges to accurately segmenting breast lesions. Recently, several U-Net-based variants and transformer-based networks have been applied in breast lesion segmentation. Nevertheless, these methods have three limitations: (1) Introducing mass attention mechanisms and complex operations, (2) Ignoring the capability of extracting local detail features, and (3) Ignoring fusing different global semantic information. To alleviate these challenges, we propose a novel multiple-feature extraction network named MF-Net. The core designs are as follows: (1) A transformer-based auxiliary bi-encoder models long-range dependencies, (2) A multiple-feature extraction module excavates the robust local features, and (3) A global feature enhancement module integrates different global context information. We conducted extensive experiments on three public breast lesion datasets and compared our method with twelve state-of-the-art methods. The results of comparison experiments indicate that our model achieves a 3.16% improvement in boundary accuracy with a slight lead in segmentation accuracy. Similarly, when the boundary accuracy is close, our model also gets a 3.92% improvement in segmentation accuracy. In the generalization experiments, our network also demonstrates varying degrees of superiority in segmentation accuracy and boundary precision. Our network mainly has three advantages: (1) It achieves outstanding performance in the precise segmentation of the breast lesions, (2) It focuses on exploring details such as irregular morphology and blurred boundaries of breast lesions, providing valuable insights for further clinical research, and (3) It improves performance without decreasing inference speed through the introduction of critical components.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
忞航完成签到 ,获得积分10
1秒前
8秒前
12秒前
32秒前
量子星尘发布了新的文献求助10
36秒前
渡增越发布了新的文献求助10
38秒前
科研通AI2S应助Wei采纳,获得10
45秒前
56秒前
渡增越完成签到,获得积分10
57秒前
酷炫灰狼发布了新的文献求助10
1分钟前
1分钟前
dawnfrf完成签到,获得积分10
1分钟前
daizao发布了新的文献求助30
1分钟前
ding应助科研通管家采纳,获得10
1分钟前
爆米花应助酷炫灰狼采纳,获得10
1分钟前
冰姗完成签到,获得积分10
2分钟前
聪聪发布了新的文献求助10
2分钟前
2分钟前
Able完成签到,获得积分10
2分钟前
sun发布了新的文献求助10
2分钟前
2分钟前
3分钟前
Ecokarster完成签到,获得积分10
3分钟前
楚楚完成签到 ,获得积分10
3分钟前
所所应助鳄鱼不做饿梦采纳,获得50
3分钟前
111完成签到 ,获得积分10
3分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
田様应助郭楠楠采纳,获得30
4分钟前
5分钟前
5分钟前
科目三应助科研通管家采纳,获得10
5分钟前
郭楠楠发布了新的文献求助30
5分钟前
5分钟前
Xyyy完成签到,获得积分10
5分钟前
RED发布了新的文献求助10
5分钟前
满天星发布了新的文献求助10
5分钟前
6分钟前
郭楠楠发布了新的文献求助10
6分钟前
缨绒完成签到 ,获得积分10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664448
求助须知:如何正确求助?哪些是违规求助? 4861425
关于积分的说明 15107679
捐赠科研通 4823016
什么是DOI,文献DOI怎么找? 2581850
邀请新用户注册赠送积分活动 1536017
关于科研通互助平台的介绍 1494385