已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An enhanced machine learning approach for effective prediction of IgA nephropathy patients with severe proteinuria based on clinical data

蛋白尿 肾病 医学 计算机科学 机器学习 人工智能 内科学 内分泌学 糖尿病
作者
Yaozhe Ying,Luhui Wang,Shuqing Ma,Yun Zhu,Simin Ye,Nan Jiang,Zongyuan Zhao,Chenfei Zheng,Yangping Shentu,YunTing Wang,Duo Li,Ji Zhang,Chaosheng Chen,Liyao Huang,Deshu Yang,Ying Zhou
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:173: 108341-108341 被引量:5
标识
DOI:10.1016/j.compbiomed.2024.108341
摘要

IgA Nephropathy (IgAN) is a disease of the glomeruli that may eventually lead to chronic kidney disease or kidney failure. The signs and symptoms of IgAN nephropathy are usually not specific enough and are similar to those of other glomerular or inflammatory diseases. This makes a correct diagnosis more difficult. This study collected data from a sample of adult patients diagnosed with primary IgAN at the First Affiliated Hospital of Wenzhou Medical University, with proteinuria ≥1 g/d at the time of diagnosis. Based on these samples, we propose a machine learning framework based on weIghted meaN oF vectOrs (INFO). An enhanced COINFO algorithm is proposed by merging INFO, Cauchy Mutation (CM) and Oppositional Based Learning (OBL) strategies. At the same time, COINFO and Support Vector Machine (SVM) were integrated to construct the BCOINFO-SVM framework for IgAN diagnosis and prediction. First, the proposed enhanced COINFO is tested on the IEEE CEC2017 benchmark problems, and the results prove its efficient optimization ability and convergence accuracy. Furthermore, the feature selection capability of the proposed method is verified on the UCI public medical datasets. Finally, the auxiliary diagnostic experiment was carried out through IgAN real sample data. The results demonstrate that the proposed BCOINFO-SVM can screen out essential features such as High-Density Lipoprotein (HDL), Uric Acid (UA), Cardiovascular Disease (CVD), Hypertension and Diabetes. At the same time, the accuracy of the BCOINFO-SVM model can reach 98.56%, the sensitivity reaches 96.08%, and the specificity reaches 97.73%. It can become a potential auxiliary diagnostic model of IgAN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
mushanes完成签到 ,获得积分10
1秒前
2秒前
4秒前
LIU发布了新的文献求助10
4秒前
6秒前
天天快乐应助大半个菜鸟采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
小王发布了新的文献求助10
7秒前
Kang发布了新的文献求助30
8秒前
Eric发布了新的文献求助10
9秒前
9秒前
Yulanda完成签到 ,获得积分10
10秒前
12秒前
李健的小迷弟应助沐易采纳,获得10
12秒前
15秒前
17秒前
情怀应助糊涂的白梦采纳,获得10
17秒前
搜集达人应助吱唔朱采纳,获得10
18秒前
小二郎应助Robin采纳,获得10
18秒前
俭朴舞仙完成签到,获得积分10
18秒前
妙妙完成签到,获得积分10
19秒前
20秒前
21秒前
Azaspiro完成签到,获得积分10
21秒前
大卷发布了新的文献求助10
21秒前
妙妙发布了新的文献求助10
22秒前
Eric完成签到,获得积分10
22秒前
SciGPT应助qiukui采纳,获得10
22秒前
美满平松发布了新的文献求助10
23秒前
23秒前
wsh完成签到 ,获得积分10
24秒前
wenbo完成签到,获得积分0
24秒前
爱学习的孩纸完成签到 ,获得积分10
24秒前
橘子完成签到 ,获得积分10
24秒前
Smile完成签到,获得积分10
25秒前
沐易发布了新的文献求助10
26秒前
27秒前
丘比特应助风过大泽采纳,获得10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
上海破产法庭破产实务案例精选(2019-2024) 500
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5475942
求助须知:如何正确求助?哪些是违规求助? 4577610
关于积分的说明 14362245
捐赠科研通 4505491
什么是DOI,文献DOI怎么找? 2468706
邀请新用户注册赠送积分活动 1456339
关于科研通互助平台的介绍 1429950