Sarcasm driven by sentiment: A sentiment-aware hierarchical fusion network for multimodal sarcasm detection

讽刺 计算机科学 模式 人工智能 模态(人机交互) 情绪分析 自然语言处理 机器学习 语言学 讽刺 哲学 社会科学 社会学
作者
Hao Liu,Runguo Wei,Geng Tu,Jiali Lin,Cheng Liu,Dazhi Jiang
出处
期刊:Information Fusion [Elsevier BV]
卷期号:108: 102353-102353 被引量:11
标识
DOI:10.1016/j.inffus.2024.102353
摘要

Sarcasm is a form of sentiment expression that highlights the disparity between a person's true intentions and the content they explicitly present. With the exponential increase in multimodal data on social platforms, the detection of sarcasm across various modes has become a pivotal area of research. Although previous studies have extensively examined multimodal feature extraction, fusion, and the modeling of inter-modal incongruities, they often neglected the subtle sentiment cues inherent in sarcastic multimodal data. Additionally, they did not adequately address the sparse distribution and tenuous connections between sarcastic features both within and cross modalities. To address these gaps, we introduce a hierarchical fusion model that integrates sentiment information for enhanced multimodal sarcasm detection. Specifically, we use attribute-object matching in the image modality, treating it as an auxiliary attribute modality. Sentiment data is then extracted from each modality and combined to achieve a more comprehensive representation within modalities. Moreover, we characterize the relationships of inter-modal incongruities using a crossmodal Transformer. We also implement a sentiment-aware image-text contrastive loss mechanism to synchronize the semantics of images and text better. By intensifying these alignments, our model is better equipped to understand incongruous relationships. Experiments demonstrate that our hierarchical fusion model achieves state-of-the-art performance on the multimodal sarcasm detection task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
响铃发布了新的文献求助10
2秒前
闪闪火车完成签到 ,获得积分10
2秒前
4秒前
jubaoswag发布了新的文献求助20
4秒前
pluto应助lam采纳,获得10
5秒前
5秒前
sun完成签到,获得积分10
9秒前
科研通AI5应助AQ采纳,获得10
10秒前
11秒前
十一完成签到,获得积分10
11秒前
充电宝应助踏实口红采纳,获得10
12秒前
13秒前
zhoutiantian完成签到 ,获得积分10
14秒前
小男孩完成签到,获得积分10
15秒前
15秒前
KanmenRider发布了新的文献求助10
15秒前
ZZZZZ发布了新的文献求助10
17秒前
轻松的小虾米完成签到,获得积分10
17秒前
17秒前
科研通AI5应助赖道之采纳,获得10
18秒前
饭饭发布了新的文献求助10
19秒前
Lemon发布了新的文献求助10
20秒前
kezhang完成签到,获得积分10
21秒前
郭医生发布了新的文献求助10
21秒前
22秒前
西门艳丶关注了科研通微信公众号
22秒前
23秒前
内向的小脑完成签到,获得积分10
26秒前
26秒前
自然的菲鹰完成签到,获得积分10
26秒前
哇哈哈发布了新的文献求助10
26秒前
莫妮卡卡完成签到,获得积分10
27秒前
慈祥的绮发布了新的文献求助10
28秒前
28秒前
Rain发布了新的文献求助10
31秒前
支元瑶发布了新的文献求助30
31秒前
kkkl完成签到,获得积分20
31秒前
31秒前
zhangyue7777完成签到,获得积分10
33秒前
Hello应助小肥羊采纳,获得10
33秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789499
求助须知:如何正确求助?哪些是违规求助? 3334519
关于积分的说明 10270310
捐赠科研通 3050937
什么是DOI,文献DOI怎么找? 1674263
邀请新用户注册赠送积分活动 802535
科研通“疑难数据库(出版商)”最低求助积分说明 760742