Modern semiempirical electronic structure methods and machine learning potentials for drug discovery: Conformers, tautomers, and protonation states

互变异构体 质子化 化学 核酶 计算化学 构象异构 药物发现 分子 立体化学 核糖核酸 生物化学 基因 离子 有机化学
作者
Jinzhe Zeng,Yujun Tao,Timothy J. Giese,Darrin M. York
出处
期刊:Journal of Chemical Physics [American Institute of Physics]
卷期号:158 (12) 被引量:21
标识
DOI:10.1063/5.0139281
摘要

Modern semiempirical electronic structure methods have considerable promise in drug discovery as universal “force fields” that can reliably model biological and drug-like molecules, including alternative tautomers and protonation states. Herein, we compare the performance of several neglect of diatomic differential overlap-based semiempirical (MNDO/d, AM1, PM6, PM6-D3H4X, PM7, and ODM2), density-functional tight-binding based (DFTB3, DFTB/ChIMES, GFN1-xTB, and GFN2-xTB) models with pure machine learning potentials (ANI-1x and ANI-2x) and hybrid quantum mechanical/machine learning potentials (AIQM1 and QDπ) for a wide range of data computed at a consistent ωB97X/6-31G* level of theory (as in the ANI-1x database). This data includes conformational energies, intermolecular interactions, tautomers, and protonation states. Additional comparisons are made to a set of natural and synthetic nucleic acids from the artificially expanded genetic information system that has important implications for the design of new biotechnology and therapeutics. Finally, we examine the acid/base chemistry relevant for RNA cleavage reactions catalyzed by small nucleolytic ribozymes, DNAzymes, and ribonucleases. Overall, the hybrid quantum mechanical/machine learning potentials appear to be the most robust for these datasets, and the recently developed QDπ model performs exceptionally well, having especially high accuracy for tautomers and protonation states relevant to drug discovery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助勤劳的晓镍采纳,获得10
1秒前
月月发布了新的文献求助10
2秒前
醉熏的飞薇完成签到,获得积分10
2秒前
5秒前
充电宝应助louise采纳,获得10
5秒前
7秒前
7秒前
yklin完成签到,获得积分10
7秒前
10秒前
王碱发布了新的文献求助10
11秒前
太叔丹翠发布了新的文献求助10
12秒前
77应助可靠的寒风采纳,获得20
12秒前
微眠发布了新的文献求助10
12秒前
13秒前
科研通AI5应助鱼书采纳,获得10
15秒前
大个应助月月采纳,获得10
15秒前
FashionBoy应助郑一昊采纳,获得10
15秒前
15秒前
可耐的如萱完成签到 ,获得积分10
18秒前
上官若男应助公子渔采纳,获得10
19秒前
weiwei完成签到,获得积分10
19秒前
20秒前
思源应助流流124141采纳,获得10
22秒前
berry完成签到,获得积分10
23秒前
chen完成签到,获得积分10
23秒前
悲凉的白开水完成签到,获得积分10
25秒前
27秒前
资白玉完成签到 ,获得积分10
28秒前
tang完成签到,获得积分10
30秒前
大妙妙完成签到 ,获得积分10
31秒前
公子渔发布了新的文献求助10
31秒前
31秒前
sunn关注了科研通微信公众号
31秒前
爆米花应助李笑采纳,获得10
32秒前
Owen应助大意的小馒头采纳,获得10
33秒前
34秒前
Gig发布了新的文献求助10
34秒前
shufessm完成签到,获得积分0
36秒前
momo发布了新的文献求助10
36秒前
郑一昊发布了新的文献求助10
37秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814404
求助须知:如何正确求助?哪些是违规求助? 3358503
关于积分的说明 10395700
捐赠科研通 3075750
什么是DOI,文献DOI怎么找? 1689542
邀请新用户注册赠送积分活动 812995
科研通“疑难数据库(出版商)”最低求助积分说明 767428