DeepCDL-PR: Deep unfolded convolutional dictionary learning with weighted ℓ1-norm for phase retrieval

先验概率 卷积神经网络 计算机科学 规范(哲学) 深度学习 人工智能 算法 模式识别(心理学) 贝叶斯概率 政治学 法学
作者
Baoshun Shi,Yating Gao,Yueming Su,Qiusheng Lian
出处
期刊:Digital Signal Processing [Elsevier BV]
卷期号:136: 103971-103971 被引量:1
标识
DOI:10.1016/j.dsp.2023.103971
摘要

Phase retrieval (PR) aims to recover the image of interest from the recorded phaseless measurement. Traditional PR algorithms that use hand-crafted priors suffer from low-quality reconstructions at low signal to noise ratios (SNRs). Recent efforts overcome this limitation by using deep priors, but existing algorithms ignore structural priors. To remedy this issue, we propose a deep unfolded convolutional dictionary learning with the weighted ℓ1-norm, termed DeepCDL, for PR. By doing so, deep priors and structural priors can be utilized. Concretely, we exploit the weighted ℓ1-norm to formulate a convolutional dictionary learning (CDL)-based minimization problem, and then unfold the corresponding iterative algorithm into a deep network architecture. Moreover, we design a data-driven weight generator to generate crucial weights in the weighted ℓ1-norm from representation coefficients. For the PR task, we first utilize structural priors to formulate a PR minimization problem, and then propose an iterative algorithm to deal with the formulated problem. The proposed DeepCDL method is utilized to solve the convolutional dictionary learning subproblem with the weighted ℓ1-norm, and an inertial epigraph method employing the inertial technique is proposed to tackle the image updating subproblem. Furthermore, the proposed PR iterative algorithm is unfolded into a feed-forward network dubbed as DeepCDL-PR, where DeepCDL serves as a prior module and the unfolded inertial epigraph method acts as an image updating module. Experiments demonstrate that DeepCDL-PR can recover higher-quality images at various noise levels, compared with previous PR algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈辉完成签到,获得积分10
1秒前
tango发布了新的文献求助10
1秒前
1秒前
大憨憨完成签到 ,获得积分10
1秒前
1秒前
ccc完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
2秒前
tang_c完成签到,获得积分10
2秒前
沉静蘑菇发布了新的文献求助10
2秒前
青海盐湖所李阳阳完成签到 ,获得积分10
2秒前
潇湘夜雨完成签到,获得积分10
4秒前
4秒前
搜集达人应助Yolo采纳,获得10
4秒前
松风水月完成签到,获得积分10
4秒前
4秒前
natureeeee完成签到,获得积分10
4秒前
5秒前
Shale完成签到,获得积分10
5秒前
万金油完成签到 ,获得积分10
5秒前
爱笑的蘑菇完成签到,获得积分10
5秒前
所所应助沉静蘑菇采纳,获得10
5秒前
顾矜应助yuanyuan采纳,获得10
5秒前
6秒前
adastra完成签到,获得积分10
6秒前
tianmj发布了新的文献求助10
7秒前
Lyue发布了新的文献求助10
7秒前
7秒前
7秒前
pengpengyin完成签到,获得积分10
8秒前
Jasper应助Gakay采纳,获得10
8秒前
8秒前
沐金秋完成签到,获得积分10
9秒前
乙醇发布了新的文献求助10
9秒前
爱岗敬业牛马人完成签到,获得积分10
10秒前
科研废柴完成签到,获得积分10
10秒前
剑影完成签到,获得积分10
10秒前
自然怀寒完成签到,获得积分10
10秒前
高分求助中
薄膜基荧光传感技术与应用(第二版) 1500
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808284
求助须知:如何正确求助?哪些是违规求助? 3352992
关于积分的说明 10362393
捐赠科研通 3069154
什么是DOI,文献DOI怎么找? 1685392
邀请新用户注册赠送积分活动 810448
科研通“疑难数据库(出版商)”最低求助积分说明 766169