已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Hybrid Ensemble End-to-End Neural Network for Accurate Protein-Protein Interactions Prediction

端到端原则 人工神经网络 计算机科学 人工智能
作者
Jie Yang,Xingyu Lan,Guoyin Wang,Zhong Chen,Yuwen Chen,Di Wu
标识
DOI:10.1109/tcbbio.2025.3593469
摘要

Protein-protein interactions (PPIs) are fundamental to understanding cellular mechanisms, signaling networks, disease pathways, and drug development. Over the years, numerous computational models with artificial intelligence (AI) have been developed to predict PPIs. However, these models mostly face significant challenges, such as fragmented feature extraction pipelines, inability to capture complex global relationships among proteins, and reliance on handcrafted features. These challenges often limit their prediction accuracy. To address these issues, the Knowledge Graph Fused Graph Neural Network (KGF-GNN) was proposed, offering an end-to-end learning approach that integrates Protein Associated Network (PAN) with observed PPI data. While KGF-GNN achieves notable performance improvements, it focuses primarily on local topological features extracted by Graph Neural Networks (GNNs), potentially overlooking critical global patterns. Moreover, its feature fusion process lacks the flexibility to effectively combine diverse biological information. To overcome these shortcomings, this paper introduces a Hybrid Ensemble End-to-End Neural Network (HEENN), which incorporates three key innovations: (1) Local Feature Extraction via Graph Attention Network (GAT): HEENN employs GAT to enable more precise extraction of local topological and semantic features, allowing the model to focus on the most relevant interactions and relationships within the data. (2) Global Feature Extraction via AutoEncoder: By leveraging an AutoEncoder framework, HEENN captures comprehensive global features from PANs and PPI datasets, complementing the GAT's local features to produce richer protein representations. (3) Attention-Enhanced Feature Fusion: An attention mechanism is employed during feature fusion to ensure an adaptive and effective integration of local and global features. Extensive experiments on real-world PPI datasets demonstrate that HEENN significantly outperforms KGF-GNN and other state-of-the-art models, achieving superior accuracy in PPI prediction. These advancements underscore the potential of HEENN in AI-driven bioinformatics research, which offers new opportunities for biological discovery and therapeutic innovation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
songyu完成签到,获得积分20
1秒前
犹豫的豹完成签到,获得积分10
1秒前
嘟嘟52edm完成签到 ,获得积分10
2秒前
爆米花应助xinyueyue采纳,获得30
2秒前
2秒前
3秒前
小可发布了新的文献求助10
4秒前
cjg发布了新的文献求助10
4秒前
songyu发布了新的文献求助30
7秒前
xxw发布了新的文献求助10
8秒前
9秒前
不爱吃柠檬完成签到 ,获得积分10
9秒前
许七安完成签到,获得积分20
10秒前
11秒前
momo完成签到,获得积分10
12秒前
MetaMysteria发布了新的文献求助10
13秒前
科研通AI6应助大力的小萱采纳,获得10
13秒前
香蕉觅云应助薛变霞采纳,获得30
13秒前
15秒前
16秒前
蔡毛线发布了新的文献求助10
17秒前
Dunna驳回了华仔应助
18秒前
18秒前
20秒前
风清扬发布了新的文献求助10
21秒前
小朱完成签到,获得积分10
21秒前
22秒前
xxw完成签到,获得积分10
22秒前
Jasper应助复方蛋酥卷采纳,获得10
23秒前
Tracy发布了新的文献求助10
25秒前
25秒前
28秒前
zsj完成签到 ,获得积分10
31秒前
小二郎应助简宁采纳,获得10
32秒前
霸气凝云完成签到 ,获得积分10
32秒前
Re0pen发布了新的文献求助10
34秒前
35秒前
35秒前
科研通AI6应助复方蛋酥卷采纳,获得10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
复杂系统建模与弹性模型研究 2000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
睡眠呼吸障碍治疗学 600
Input 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5487979
求助须知:如何正确求助?哪些是违规求助? 4587110
关于积分的说明 14412571
捐赠科研通 4518288
什么是DOI,文献DOI怎么找? 2475637
邀请新用户注册赠送积分活动 1461342
关于科研通互助平台的介绍 1434214