Advancing Digital Precision Medicine for Chronic Fatigue Syndrome through Longitudinal Large-Scale Multi-Modal Biological Omics Modeling with Machine Learning and Artificial Intelligence.

作者
Ruoyun Xiong
出处
期刊:PubMed
链接
标识
摘要

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a complex debilitating disorder manifesting as severe fatigue and post-exertional malaise. The etiology of ME/CFS remains elusive. Here in chapter one, we present a deep metagenomic analysis of stool combined with plasma metabolomics and clinical phenotyping of two ME/CFS cohorts with short (<4y, n=75) or long-term disease (>10y, n=79) compared to healthy controls (n=79). First, we describe microbial and metabolomic dysbiosis in ME/CFS patients. Short-term patients showed significant microbial dysbiosis, while long-term patients had largely resolved microbial dysbiosis but had metabolic and clinical aberrations. Second, we identified phenotypic, microbial, and metabolic biomarkers specific to patient cohorts. These revealed potential functional mechanisms underlying disease onset and duration, including reduced microbial butyrate biosynthesis together with a reduction in plasma butyrate, bile acids, and benzoate. In addition to the insights derived, our data represent an important resource to facilitate mechanistic hypotheses of host-microbiome interactions in ME/CFS. We then studied a more generalized question in chapter two: chronic diseases like ME/CFS and long COVID exhibit high heterogeneity with multifactorial etiology and progression, complicating diagnosis and treatment. To address this, we developed BioMapAI, an explainable Deep Learning framework using the richest longitudinal multi- 'omics dataset for ME/CFS to date. This dataset includes gut metagenomics, plasma metabolome, immune profiling, blood labs, and clinical symptoms. By connecting multi- 'omics to a symptom matrix, BioMapAI identified both disease- and symptom-specific biomarkers, reconstructed symptoms, and achieved state-of-the-art precision in disease classification. We also created the first connectivity map of these 'omics in both healthy and disease states and revealed how microbiome-immune-metabolome crosstalk shifted from healthy to ME/CFS. Thus, we proposed several innovative mechanistic hypotheses for ME/CFS: Disrupted microbial functions - SCFA (butyrate), BCAA (amino acid), tryptophan, benzoate - lost connection with plasma lipids and bile acids, and activated inflammatory and mucosal immune cells (MAIT, γ δ cells) with INFγ and GzA secretion. These abnormal dynamics are linked to key disease symptoms, including gastrointestinal issues, fatigue, and sleep problems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助科研通管家采纳,获得10
1秒前
顾矜应助科研通管家采纳,获得10
1秒前
VDC应助科研通管家采纳,获得30
1秒前
BowieHuang应助科研通管家采纳,获得10
1秒前
无极微光应助科研通管家采纳,获得20
1秒前
wanci应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
NICAI应助科研通管家采纳,获得10
2秒前
VDC应助科研通管家采纳,获得30
2秒前
英姑应助科研通管家采纳,获得10
2秒前
wanci应助科研通管家采纳,获得10
2秒前
2秒前
BowieHuang应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
3秒前
浮游应助科研通管家采纳,获得10
3秒前
Akim应助科研通管家采纳,获得10
3秒前
VDC应助科研通管家采纳,获得30
3秒前
华仔应助科研通管家采纳,获得10
3秒前
白夜发布了新的文献求助10
3秒前
VDC应助科研通管家采纳,获得30
3秒前
3秒前
3秒前
5秒前
亦亦完成签到 ,获得积分10
5秒前
7秒前
科研通AI2S应助胡子采纳,获得30
7秒前
Doc完成签到,获得积分10
8秒前
11完成签到,获得积分10
8秒前
科研通AI6应助灵巧伊采纳,获得10
9秒前
10秒前
11秒前
我是谁完成签到,获得积分20
13秒前
姬文博发布了新的文献求助10
13秒前
16秒前
17秒前
白夜完成签到,获得积分10
17秒前
赘婿应助我是谁采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5554351
求助须知:如何正确求助?哪些是违规求助? 4638931
关于积分的说明 14654584
捐赠科研通 4580716
什么是DOI,文献DOI怎么找? 2512453
邀请新用户注册赠送积分活动 1487226
关于科研通互助平台的介绍 1458129